تحلیل نقش خوشه‌های صنعتی در رشد صادرات بنگاه‌های صنعتی در ایران

نوع مقاله: علمی - پژوهشی

نویسنده

استادیار گروه اقتصاد دانشگاه بین المللی امام خمینی (ره)

چکیده

یکی از مهم‌ترین کارکردهای خوشه‌های صنعتی فراهم نمودن شرایط ارتقای رقابت‌پذیری و بالطبع افزایش توان صادراتی بنگاه‌های عضو خوشه است. در مقاله حاضر با بهره‌گیری از رویکرد رگرسیون پانل پویا و به روش گشتاورهای تعمیم‌یافته، و همچنین با استفاده از داده‌های آماری مربوط به بنگاه‌های صنعتی ده نفر کارکن و بیشتر در ایران، نقش و تأثیر خوشه‌های صنعتی در ارتقای صادرات بنگاه‌های صنعتی مورد بررسی و آزمون قرار گرفته است. بدین منظور توابع ایستا و پویای عرضه صادرات بنگاه‌های صنعتی با لحاظ  متغیر خوشه‌های صنعتی به‌عنوان یکی از متغیرهای مستقل اثرگذار بر صادرات، برآورد گشته است. یافته‌های حاصل از برآوردتوابع ایستا و پویای عرضه صادرات صنعتی مؤید این امر است که خوشه‌های صنعتی و تمرکز بنگاه‌های صنعتی در قالب خوشه‌ای، نقش مثبت و معنی‌داری در افزایش توان صادراتی بنگاه‌های صنعتی دارد. مبتنی بر تخمین تابع پویای عرضه صادرات ، کشش عرضه صادرات صنعتی نسبت به متغیر خوشه‌های صنعتی 0.6 به دست آمده است و مؤید این امر است که به ازای یک درصد رشد در متغیر خوشه‌های صنعتی، صادرات صنعتی به اندازه 0.6 درصد افزایش می‌باید. همچنین یافته‌ها نشان می‌دهد که صادرات صنعتی کشور ارتباط مثبت معنی‌دار با تولید و نرخ ارز دارد درحالی‌که شاخص قیمت صادراتی تأثیر منفی بر صادرات صنعتی دارد. 

کلیدواژه‌ها


عنوان مقاله [English]

Analysing the effect of industrial clusters on industrial firms export in Iran

نویسنده [English]

  • hamid azizmohammadlo
چکیده [English]

Introduction: Industrial clusters are the geographic concentration of mainly small and medium enterprises (producing, complementary and supporting companies) facing with common challenges and opportunities.One of the main functions of industrial clusters is to provide the conditions required for competitiveness and export promotion of clusters members and stakeholders. Cluster development program in Iran, has been started since one decade ago and needs to be investigated in terms of its effect on the export potential of clusters members. This paper has studied the effects of industrial clusters on export promotion of industrial firms using data gathered from manufacturing establishment (with more than 10 employees) in Iran.
 
Methodology: Levin, Lin, Chu Test and Im, Pesaran, Shin Test was used to test the stationarity of variables. In order to test the existence of co-integration relationship between variables, Kao and Pedroni tests were applied. Generalized method of moment is used to estimate the dynamic panel regression. For this purpose, the dynamic and static functions of industrial export supply have been estimated considering industrial clusters as one of the independent variables included in the functions. The null hypothesis that the over-identifying restrictions are valid was tested by Sargan statistic. Arellano and Bond test was used to test the serial correlation. Required data was gathered from Iran manufacturing establishment (with more than 10 employees) during the period 2001-2012.
 
Discussion and conclusion: theoretical and empirical background of industrial clusters studies strongly support the effective role of industrial cluster in competitiveness and export performance um enterprises. The findings of both estimated dynamic and static industrial export supply functions in this paper reveal that industrial cluster and firms agglomeration in form of cluster, has a positive and statistically significant effects on industrial firms export. According to the estimated dynamic industrial export supply function, the elasticity of export supply with respect to industrial clusters was estimated around 0.6 which means that one percent increase in the situation of industrial clusters can leads to 0.6 percent increase in industrial export.  Based on the estimated static industrial export supply function, however, the elasticity of export supply with respect to industrial clusters was estimated around 0.02 which is statistically significant and shows that one percent increase in the situation of industrial clusters can leads to 0.02 percent increase in industrial export. These findings are compatible with the theoretical expectations regarding the relationship between clustering and export.
 Industrial export is also positively influenced by industrial firm’s production and exchange rate and is negatively affected by manufacturing export price index. According to the estimated coefficients of variables included in the dynamic and static industrial export supply functions, exchange rate has the strongest positive effect- compared with other variables- on export of industrial clusters. In other words, one percent increase in the exchange rate can leads to 2.6 percent increase in industrial cluster export. This reveals that the elasticity of industrial cluster export with respect to exchange rate is greater than one.   Provincial GDP is another variable which positively affects the level of industrial cluster exports so that one percent increase in gross domestic production leads to 0.7 percent increase in industrial cluster export located in different provinces in Iran. Export price index, however, has a negative and significant effect on industrial cluster export. This result is compatible with the theoretical expectations. The elasticity of industrial cluster export with respect to export price index is 0.3 which is less than one. It is inferred, therefore, that increasing in the price of export products of clusters did not reduce the export total revenue gained from industrial clusters.

کلیدواژه‌ها [English]

  • Industrial Clusters
  • Export
  • Dynamic Panel Regression
  • Generalized Method of Moment

داداش­پور، هاشم (1388). «خوشه‌های صنعتی، یادگیری، نوآوری و توسعه منطقه‌ای»، مجله راهبرد یاس، 18: 70-53.

داداش‌پور، هاشم؛ پورطاهری، مهدی و معرفی، ابوالفضل (1392). «بررسی و تحلیل رابطه خوشه‌ای شدن صنعتی و ارتقاء ظرفیت‌های یادگیری (موردمطالعه: خوشه‌های صنعتی مبلمان و چاپ و نشر در شهر قم)»، فصلنامه مدیریت صنعتی، 8(25): 104-93.

رجب­پور، حسین و ستاری­فر، محمد (1392). «بررسی اثر توسعه خوشه‌های صنعتی بر کارایی و مزیت رقابتی بنگاه‌های کوچک و متوسط (مطالعه موردی: خوشه فرآوری سنگ تهران)»، مجلهاقتصادوتوسعهمنطقه‌ای، 20(6): 82-54.

سلیمانی، غلامرضا؛ عزیزمحمدلو، حمید و وحدت، سیاوش (1394). توسعه خوشه‌های کسب‌وکار در ایران، دستاوردها و تجارب عملی). انتشارات آیین محمود: چاپ اول.

ظهوریان، میثم و رحیم نیا، فریبرز (1394)؛ «ارائه‌ی الگوی توسعه‌ی پایدار خوشه‌های کسب‌وکار در ایران»، توسعهکارآفرینی، 8(1): 41-59.

مرکز آمار ایران، خلاصه طرح آمارگیری از کارگاه‌های صنعتی 10 نفر کارکن و بیشتر، سال‌های 1380 تا 1391.

مرکز آمار ایران، سالنامه آماری کشور، سال‌های 1380 تا 1391.

موسوی نقابی، سید مجتبی؛ نظری، محسن؛ حسنقلی­پور، طهمورث؛ سلیمانی، غلامرضا و عباسیان، عزت‌الله (1394)؛ «طراحی مدل شبکه‌سازی فعالیت‌های بازاریابی بنگاه‌های فعال در خوشه‌های صنعتی ایران»، فصلنامهعلوممدیریتایران، 10(37): 77-51.

Altenburg, T. and Meyer–Stamer, J. (1999); “How to promote clusters: Policy experience from Latin Anerica”, World Development, 27 (9): 1693-1713.

Arrelano, M. and Bond, S. (1991); “Some tests of specification in panel data: Monte Carlo evidence and an application to employment equations”, Review of Economicsand Statistics, 58: 277-297.

Arrelano, M. and Bover, O. (1995); “Another look at the instrumental variablesestimation of error components models”, Journal of Econometrics, 68: 29-51.

Baltagi, B. H. (2005); Econometric analysis of panel date, John Wiley & Sons Ltd, England.

Belso-Martínez, J. A. (2006); “Do industrial districts influence export performance and export intensity? Evidence for Spanish SMEs’ internationalization process”, European Planning Studies, 14(6), 791-810.

Blundell, R. and Bond, S. (1998); “Initial conditions and moment restrictions in dynamic panel data models”, Journal of Econometrics, 87: 11-143.

Bond, S. (2002); “Dynamic panel models: a guide to micro data methods and practice”. Institute for Fiscal Studies, Department of Economics, UCL. , (Centre for Microdata Methods and practice), Working Paper, CWPO9/02.

Breitung, J. (2000); “The Local Power of Some Unit Root Tests for Panel Data”, in B. Baltagi (ed.), Advances in Econometrics, Vol. 15: Nonstationary Panels, Panel Cointegration, and Dynamic Panels, Amsterdam: JAI Press: 161-178.

Campbell, A. J. and Wilson, D. T. (1996); Managed Networks: Creating Strategic Advantage, in Iacobucci, D. (Ed.), Networks in Marketing, Sage, London: 5-43.

Chhair, S. & Newman, C. (2014); “Clustering, Competition, and Spillover Effects: Evidence from Cambodia”, Working Paper, No. 11, World Institute for Development Economic Research (UNU/WIDER), United Nations University.

Ebadzadeh Semnani, S. S., Dadfar, H. & Brege, S. (2015); “The role of export clusters in export performance of SMEs: the case of Iranian energy industry”, Quality Innovation Prosperity/ Kvalita Inovácia Prosperita, 199(2): 136-160.

 Fernhaber, S. A., Gilbert, B. A., & McDougall, P. P. (2008); “International entrepreneurship and geographic location: an empirical examination of new venture internationalization”, Journal of International Business Studies, 39(2): 267-290.

Ghauri, P.; Lutz, C. and Tesfom, G. (2001); “Using Networks to Solve Export-Marketing Problems of Small and Medium-sized Firms from Developing Countries”, European Journal of Marketing, Vol. 37 No. 5/6: 728-752.

Hadri, K. (2000); “Testing for Stationarity in Heterogeneous Panel Data,” Econometric Journal, 3: 148-161.

Hakansson, H. and Snehota, I. (1995); Developing Relationships in Business Networks, Routledge, and London.

Hiller, S. (2014). Business or Ethnic Networks: What matters for export success? Aarhus University, School of Business and Social Sciences, Department of Economics and Business, Denmark

Humphrey, J. and Schmitz, H. (1998(; “Trast and inter – firm relations in developing and transitioning economics”, The Journal of Development studies, 34(4): 32-61.

Im, K.S.; Pesaran, M.H. and Shin, Y. (2003); “Testing for Unit Roots in Heterogeneous Panels”, Journal of Econometrics, 115: 53-74.

Kaleka, A. and Katsikeas, S. (1995); “Exporting problems: the relevance of export development”, Journal of Marketing Management, 1(11): 499-515.

Kang, Y.; College, W. and Ramirez, S. (2007); “Made In China: Coastal Industrial Clusters and Regional Growth”, Issues in Political Economy, Vol. 16: 1-16.

Kao, Chinwa D. (1999); “Spurious Regression and Residual-Based Tests for Cointegration in Panel Data”, Journal of Econometrics, 90: 1-44.

Kaynak, E. and Kothtari, V. (1984); “Export behaviour of small and medium sized manufacturer: some policy guide lines for international marketeers”, Management International Review, 24(2): 61-69.

Kerin, R.A. (1990); “Contemporary Perspectives on Strategic Market Planning”, Allyn & Bacon, Need ham Heights, MA.

Ketels, C. (2003); “The Development of the cluster concept – Present experiences and further developments”, Prepared for NRW conference on clusters, Duisburg, Germany, 5 Des 2003.

Ketels, K. and Protsiv, S. (2013); “Clusters and the New Growth Path for Europe”. Working Paper, no 14, www.foreurope.eu.

Leonidou, L. C. (1995); “Empirical research on export barriers: review, assessment, and synthesis”, Journal of International Marketing, 3(1): 29-43.

Levin, A.; Lin, C.F. and Chu, C. (2002); “Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties”, Journal of Econometrics, 108: 1-24.

Lundequist, P. (2002); Doctoral dissertation for the degree of Doctor of Philosophy in Social and EconomicGeography at Uppsala University.

Lundvall, B. (1992); National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning, London. Pinter.

Maskell, P. (2001); “Knowledge Creation and Diffusion in Geographic Clusters”, International Journal of Innovation Management, 5(2): 213-237.

Mittelstaedt, J. D., Ward, W. A., & Nowlin, E. (2006); Location, industrial concentration and the propensity of small US firms to export: entrepreneurship in the international markplace, International Marketing Review, 23(5): 486-503.

Oral, M. and Kettani, O. (1997); Globalisation Competitiveness: Implication for Policy and strategy Formulation, Bilkent University Press, Ankra, Turkey.

Pedroni, P. (1999); “Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors”, Oxford Bulletin of Economics and Statistics, 61: 653-70.

Pedroni, P. (2004); “Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis”, Econometric Theory, 20: 597-625.

Phillips, P.C.B. and Perron, P. (1988); “Testing for a Unit Root in Time Series Regression”, Biometrika, 75: 335-346.

Porter, M.E. (1998); “Clusters and the New Economic of Competition”, Harvard Business Review, 76(6):77-90.

Prim, A. L.  Amal, M., & Carvalho, L (2016); “Regional Cluster, Innovation and Export Performance: An Empirical Study”, Brazilian Administration Review. 13 (2): 1-26.

Pyke, F.; Becattini, O. and Sengenberger, W. (1990); Industrial districts and inter-firm co-operation in Italy. International Institute for Labor Studies, Geneva.

Ramaseshan, B. and Soutar, G.N. (1995); “Combined effects of incentives and barriers on firms’ export decisions”; International Business Review, 5(1): 53-65.

Ricci, L.A. and Trionfetti, F. (2012); “Productivity, Networks, and Export Performance: Evidence from a Cross-country Firm Dataset”, Review of International Economics, 20(3): 552-562,

Singh, Sh. and Chugan, P. K. (2013); “Clustering as a tool for enhancing export performance of smes: a study of brass manufacturing units in Jamnagar”, International Journal of trade & global business perspectives, 2(2): 421-426.

Tomiura, E. (2007); “Effects of R&D and networking on the export decision of Japanese firms”, Research Policy, 36(5):758-767.

Weinhold, D. and Rauch, J. (1997); “Openness, specialization, and productivity growth in less Developed Countries”, Working paper 6131, National Bureau of Economic Research, Camberidge.

Welch, L.S. and Joynt, P. (1987); Grouping for export an effective solution? In Rosson, P.J., Reid, S.D. (Eds), Managing Export entry and Expansion: Concepts and Practice, Praeger, New York, NY

Yang, Y.S. (1992); “A market expansion ability approach to identify potential exporters”, Journal of Marketing, 56: 84-96.