به‌کارگیری هوش مصنوعی در پیش‌بینی تولید ناخالص داخلی و نرخ بیکاری و تأثیر متقابل آن‌ها بر یک‌دیگر در اقتصاد ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد گروه اقتصاد، دانشکدۀ علوم اقتصادی و اجتماعی، دانشگاه بوعلی‌سینا، همدان، ایران

2 استاد گروه اقتصاد، دانشکدۀ علوم اقتصادی و اجتماعی، دانشگاه بوعلی‌سینا، همدان، ایران

10.22084/aes.2024.28832.3662

چکیده

بیکاری و تولید ناخالص از شاخص‌های مهم اقتصادی هستند؛ پیش‌بینی این دو شاخص می‌تواند در اصلاح ساختار اقتصادی و بهبود اقتصاد  مفید واقع شود. تکنیک‌ها و ابزارهای هوش مصنوعی می‌توانند برای پیش‌بینی شاخص‌های مهم اقتصادی نقش مهمی ایفا کنند. با توجه به اهمیت این دو شاخص، پژوهش حاضر ابتدا به پیش‌بینی روند دو شاخص به‌صورت جداگانه و سپس پیش‌بینی میزان نرخ رشد تولید ناخالص داخلی براساس نرخ بیکاری با استفاده از تکنیک‌های هوش مصنوعی می‌پردازد. برای این‌منظور در این پژوهش، از داده‌های فصلی مربوط به تولید ناخالص داخلی و نرخ بیکاری برای سال‌های 1385-1401 استفاده شده است؛ هم‌چنین از مدل‌های یادگیری ماشین مبتنی‌بر رگرسیون برای پیش‌بینی بهره گرفته شده است. در این پژوهش، به‌منظور استنتاج بهتر، نتایج پیش‌بینی روش‌های یادگیری ماشین با روش اقتصادسنجی ARIMA نیز مورد مقایسه قرار گرفته است. نتایج حاصل از پیاده‌سازی نشان می‌دهد که پیش‌بینی مدل‌های مذکور از لحاظ معیارهای ارزیابی مانند جذر میانگین مجذور خطا، میانگین قدرمطلق خطا، میانگین قدرمطلق درصد خطا، دارای دقت مناسبی است و بیانگر این است که تکنیک‌های هوش مصنوعی هم می‌توانند دو شاخص اقتصادی مذکور و تأثیر متقابل آن‌ها بر یک‌دیگر را پیش‌بینی کنند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Artificial Intelligence in Predicting GDP and Unemployment Rate, and Their Mutual Impact on The Economy of Iran

نویسندگان [English]

  • Marzieh Shiri 1
  • Mohammd Hasan Fotros 2
1 M. A. in Economics, Department of Economics, Faculty of Economics and Social Sciences, Bu-Ali Sina University, Hamedan, Iran
2 Professor, Department of Economics, Faculty of Economics and Social Sciences, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

The unemployment rate and Gross Domestic Product (GDP) are among the most important economic indicators that understanding their current and future trends can help policymakers and decision-makers adopt appropriate solutions to prevent crises and improve the country’s economic situation. Accurate prediction of these two indicators can be useful in future planning and improving the country’s economy and people’s livelihoods. In recent years, artificial intelligence techniques and tools, given their many capabilities, can play a very important role in predicting important economic indicators. Therefore, given the high importance of the two indicators of unemployment rate and GDP on the economy of our country Iran, this article intends to first predict these two indicators separately and then predict the rate of GDP growth based on the unemployment rate using artificial intelligence techniques. For this purpose, in this research, seasonal data related to GDP and its components and the unemployment rate for the years 1976-2022 have been used. Also, machine learning models based on regression have been used for prediction. The results show that the predictions of the mentioned models have an appropriate accuracy in terms of evaluation criteria such as root mean square error, mean absolute error, mean absolute percentage error, which indicates.

کلیدواژه‌ها [English]

  • Prediction
  • Gross Domestic Product (GDP)
  • Unemployment
  • Artificial Intelligence
  • Machine Learning
- اسعدی، مرضیه، (1400). «برآورد و ارزیابی شاخص قیمت املاک با استفاده از روش هوش مصنوعی». دومین کنفرانس بین‌المللی چالش‌ها و راهکارهای نوین در مهندسی صنایع و مدیریت و حسابداری، دامغان.  https://civilica.com/doc/1244588
- ایلکا، نبی، (1398). «بررسی تاثیر رکود اقتصادی و افزایش نرخ بیکاری در ایران». چهارمین همایش بین‌المللی مدیریت، حسابداری، اقتصاد و علوم اجتماعی، همدان.  https://civilica.com/doc/1038347
- بخردی‌نسب، وحید؛ کمالی، احسان؛ و ابراهیمی‌کهریزسنگی، خدیجه، (1400). «بررسی آزمون دقت پیش‌بینی تولید ناخالص داخلی با تکیه‌بر اطلاعات مقایسه‌ای سود حسابداری تجمعی متورم و تورم زدایی شده». فصلنامۀ پژوهش‌های حسابداری مالی، 13 (3): 1-34.  DOI: 10.22108/FAR.2021.125653.1685
- شایگانی، بیتا؛ سلامی، امیربهداد؛ و خوچیانی، رامین، (1393). «مدل پیشنهادی برای پیش بینی تولید ناخالص داخلی کاربرد مدل‌های ARIMA شبکه‌های عصبی و تبدیل موجک». فصلنامۀ دانش مالی تحلیل اوراق بهادار، 7 (24): 147-162. https://sanad.iau.ir/Journal/jfksa/Article/803494
- شاه‌آبادی، ابوالفضل، (1387). «بررسی اثر فعالیت‌ها و سیاست‌های اقتصادی دولت بر رشد تولید ناخالص داخلی غیرنفتی (مطالعۀ موردی اقتصاد ایران)». فصلنامۀ پژوهشنامه اقتصادی، 7 (26): 181-211. https://joer.atu.ac.ir/article_3245.html?lang=fa
- صبری، مهدی، (1396). «پایدارسازی و کنترل سیستم قدرت با استفاده از الگوریتم های فراابتکاری». دوفصلنامۀ کارافن، 14 (2: 42): 33-55.  https://karafan.tvu.ac.ir/article_100504.html
- صداقتی، نرجس؛ و قاسمی، ندا، (1391). «پیش‌بینی تولید ناخالص داخلی رویکرد MLP, ARIMA». اولین کنفرانس بین المللی مدیریت، نوآوری و تولید ملی، قم: 56.   https://civilica.com/doc/189856
- صفری‌دهنوی، وحید؛ و شفیعی، مسعود، (1400). «پیش‌بینی ارزش سهام با استفاده از شبکه عصبی فازی پیشنهادی و الگوریتم ترکیبی». فصلنامۀ علمی کارافن، 18(1): 203-221. doi: 10.48301/kssa.2021.131058
- فرج‌نیا، سلمان؛ یوسفی، کوثر؛ و فدایی، مهدی، 1399، «مدلسازی نرخ بیکاری در ایران: بیکاری ساختاری، تغییرات اشتغال بخشی و سیاست پولی پیش بینی نشده». فصلنامۀ پژوهشنامه اقتصادی، 20 (78): 213-252.  https://doi.org/10.22054/joer.2020.12365
- گریگوری، مانکیو، (1388). اقتصاد کلان. ترجمۀ عرب پور، انتشارات نی.
- نقدی، سجاد؛ اسدی، غلامحسین؛ فضل‌زاده، علیرضا؛ و نوفرستی، محمد، (1396). «مدل سازی و پیش بینی شاخص‌های اقتصادی با استفاده از سودهای کل حسابداری و پیش بینی شده توسط مدیران». پژوهش‌های تجربی حسابداری، 7 (4: 26): 165-190.  DOI: 10.22051/JERA.2017.15739.1688
- Asadi, M., (1400), “Estimation and evaluation of real estate price index using artificial intelligence method”. The second international conference on new challenges and solutions in industrial engineering and management and accounting, Damghan, https://civilica.com/doc/1244588 (in Persian).
- Athey, S., (2018). “The impact of machine learning on economics.” The economics of artificial intelligence: An agenda. University of Chicago Press: 507-547. https://www.nber.org/system/files/chapters/c14009/c14009.pdf
- Attfield, C. L. F. & Silverstone, B., (1997). “Okun’s coefficient: A comment. Review of Economics and Statistics”, The Review of Economics and Statistics,79: 326–329. https://direct.mit.edu/rest/article-abstract/79/2/326/56974/Okun-s-Coefficient-A-Comment
- Bekhradi Nasab, V.; Kamali, E. & Ebrahimi Kohriz Sangi, Kh., (1400), “Examining the accuracy test of GDP forecast based on the comparative information of inflated and deflated cumulative accounting profit”. Journal of Financial Accounting Research, 13 (3): 1-34.  DOI: 10.22108/FAR.2021.125653.1685 (in Persian).
- Celbiş, M. G., (2022). “Unemployment in Rural Europe: A Machine Learning Perspective”. Applied Spatial Analysis and Policy: 1-25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162380/
- Farajnia, S.; Yousefi, K. & Fadaei, M., (2021). “Modeling Unemployment Rate in Iran: Structural Unemployment, Changes in Employment Status, and Unpredicted Monetary Policy”. Quarterly Journal of Economic Research, 20 (78): 213-252.  https://doi.org/10.22054/joer.2020.12365 (in Persian).
- Husin, W. Z. W.; Abdullah, N. S. A.; Rockie, N. A. S. Y. & Sabri, S. S. M., (2023). “Neural Network Model in Forecasting Malaysia’s Unemployment Rates”. ASM Science Journa, 18. https://doi.org/10.32802/asmscj.2023.1062
- Ilka, N., (2018). “Study of the impact of economic recession and increase in unemployment rate in Iran”. 4th International Conference on Management, Accounting, Economics and Social Sciences, Hamadan, https://civilica.com/doc/1038347 (in Persian).
- Karahan, M. & Çetintaş, F., (2022). “Forecasting Of Turkey's Unemployment Rate For Future Periods With Artificial Neural Networks”. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (62): 163-184. https://dergipark.org.tr/en/download/article-file/2187365
- Katris, Ch., (2020). “Prediction of unemployment rates with time series and machine learning techniques”. Computational Economics:  55 (2): 673-706. https://ideas.repec.org/a/kap/compec/v55y2020i2d10.1007_s10614-019-09908-9.html
- Ke, G.; Meng, Q.; Finley, T. et al., (2017), “LightGBM: a highly efficient gradient boosting decision tree”. In: 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, NIPS.  https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
- Kramer, O. & Kramer, O., (2013). “K-nearest neighbors”. Dimensionality reduction with unsupervised nearest neighbors: 13-23. https://link.springer.com/chapter/10.1007/978-3-642-38652-7_2
- Kreiner, A. & Duca, J., (2020). “Can machine learning on economic data better forecast the unemployment rate?”. Applied Economics Letters, 27(17): 1434-1437. https://digitalcommons.oberlin.edu/cgi/viewcontent.cgi?article=1125&context=honors
- Maccarrone, G.; Morelli, G. & Spadaccini, S., (2021). “GDP forecasting: machine learning, linear or autoregression?”. Frontiers in Artificial Intelligence, 4: 757864.  https://www.frontiersin.org/articles/10.3389/frai.2021.757864/pdf
- Mankiw, N. G., (2012). “Macroeconomics”. (H. R. Arabpour, Trans.). Tehran: Ney Publishing. (Original work published 2009). https://nashreney.com/product/ (in Persian).
- Naghdi, S.; Asadi, Gh.; Fazalzadeh, A.& Nofarsti, M., (2016), “Modeling and forecasting of economic indicators using total accounting profits and forecasts by managers”. Journal of Empirical Research in Accounting, 7 (4: 26): 165-190.  DOI: 10.22051/JERA.2017.15739.1688 (in Persian).
- Navada, Arundhati, et al., (2011). “Overview of use of decision tree algorithms in machine learning”.  IEEE control and system graduate research colloquium. IEEE. https://ieeexplore.ieee.org/document/5991826
- Sabri, M., (2017). “Stabilization and control of the power system using meta-heuristic algorithms”. Karafan Quarterly Scientific Journal, 14(42), 33-55. https://karafan.tvu.ac.ir/article_100504.html
- Safari Dehnavi, V. & Shafiee, M., (2021). “Stock Value Prediction Using Proposed Fuzzy Neural Network and Hybrid Algorithm”. Karafan Scientific-Research Journal, 18(1): 203-221. doi: 10.48301/kssa.2021.131058 (in Persian)
- Sedaghati, N. & Ghasemi, N., (2013). “Forecasting gross domestic product using the MLP approach, ARIMA”. The first international conference on management, innovation and national production, Qom, https://civilica.com/doc/189856 (in Persian)
- Shahabadi, A., (2008). “Investigating the Effect of Government Economic Activities and Policies on the Growth of Non-Oil Gross Domestic Product (A Case Study of the Iranian Economy)”. Quarterly Journal of Economic Research, 7(26): 181-211. https://joer.atu.ac.ir/article_3245.html (in Persian).
- Shayegani, B.; Salami, A. & Khouchian, R., (2014). “Proposed Model for Predicting Gross Domestic Product Using ARIMA Models, Neural Networks, and Wavelet Transform”. Journal of Financial Knowledge and Securities Analysis, 7 (24): 147-162. https://sanad.iau.ir/Journal/jfksa/Article/803494 (in Persian).
- Svetnik, V. et al., (2003). “Random forest: a classification and regression tool for compound classification and QSAR modeling”. Journal of chemical information and computer sciences 43 (6): 1947-1958. https://www.ijstr.org/paper-references.php?ref=IJSTR-0420-34297