تأثیر سیاست پولی بر رفتار رمه‌ای در بورس اوراق بهادار تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای علوم اقتصادی، گروه اقتصاد، دانشکدۀ اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار گروه اقتصاد، دانشکدۀ اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران

3 استادیار گروه اقتصاد، دانشکدۀ اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران

چکیده

تجربۀ اقتصاد جهانی طی چند دهۀ اخیر نشان می‌دهد که رفتار رمه‌ای یکی از اصلی‌ترین عوامل شکل‌گیری بحران‌های مالی است. اقتصاددانان در شناسایی دلایل وقوع چنین رفتاری انگشت اتهام را به‌سوی عوامل مختلفی نشانه رفته‌اند که شاید بتوان گفت سیاست پولی در صدر این لیست قرار دارد. به‌دلیل آثار زیان‌باری که رفتار رمه‌ای در بازار سهام می‌تواند به‌همراه داشته باشد، شناسایی عوامل مؤثر بر آن می‌تواند از اهمیت بالایی برخوردار باشد. بر این‌اساس، هدف اصلی این مطالعه، بررسی تأثیر سیاست پولی بر شکل‌گیری رفتار رمه‌ای در بورس اوراق بهادار تهران است. در این راستا، با استفاده از داده‌های ماهانۀ دورۀ زمانی فروردین 1388 تا اسفند 1399 و با کاربرد مدل غیرخطی STR-GARCH تأثیر سیاست پولی بر شکل‌گیری رفتار رمه‌ای در بازار سهام ایران بررسی شد. استفاده از این روش، این امکان را برای محقق فراهم می‌کند که بتواند الگوی غیرخطی موجود در رفتار رمه‌ای را مدل‌سازی کند. در مدل برآورد شده، از شاخص «چانگ» و همکاران (2000) برای اندازه‌گیری پراکندگی بازده سهام حول بازده بازار بهره گرفته شده و همچنین، متغیر سیاست پولی (رشد حجم نقدینگی) به‌عنوان متغیر آستانه مورداستفاده قرار گرفته است. با انتخاب این متغیر به‌عنوان متغیر آستانه‌ای می‌توان بررسی کرد که آیا تغییرات در این متغیر می‌تواند منجر به انتقال از رژیم عقلایی به رژیم رمه‌ای شود یا خیر؟ نتایج مطالعه حاکی از آن است که رفتار رمه‌ای در بورس اوراق بهادار تهران، دارای یک رفتار متغیر طی زمان است و الگوی خطی برای بررسی چنین رفتاری مناسب نیست؛ هم‌چنین نتایج تحقیق نشان می‌دهد که براساس مقادیر مختلف متغیر رشد نقدینگی، رفتار سرمایه‌گذاران تغییر می‌کند، به‌نحوی که برای مقادیر رشد نقدینگی ماهانۀ کوچک‌تر از 3/2 درصد، رفتار عقلایی در تصمیم‌های سرمایه‌گذاری مشاهده می‌شود، اما با افزایش نرخ رشد نقدینگی و عبور از این آستانه، به مرور، رفتار رمه‌ای رفتار غالب در بازار سهام می‌شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Impact of Monetary Policy on Herding Behavior in Tehran Stock Exchange

نویسندگان [English]

  • Mohammad Hossein Shararkhah Alanagh 1
  • Ali Rezazadeh 2
  • Shahab Jahangiri 3
1 PhD student in economics, Department of Economics, Faculty of Economics and Management, Urmia University, Urmia, Iran
2 Associate Professor, Department of Economics, Faculty of Economics and Management, Urmia University, Urmia, Iran
3 Assistant Professor, Department of Economics, Faculty of Economics and Management, Urmia University, Urmia, Iran
چکیده [English]

The experience of the world economy over the last few decades shows that herd behavior is one of the main factors in the formation of financial crises. In identifying the causes of such behavior, economists have pointed the finger of accusation at various factors, and it can be said that monetary policy is at the top of this list. Because of the harmful effects of herd behavior on stock market, identifying the factors influencing this type of behaviour can be of great importance. As a result, the main objective of this study is to investigate the effect of monetary policy on the formation of herd behavior in Tehran Stock Exchange. In this regard, using the monthly data from April 2009 to March 2021 and using the non-linear STR-GARCH model, the effect of monetary policy on the formation of herd behavior in the Iranian stock market was investigated. This method allows the researcher to model the non-linear pattern in herd behavior. In the estimated model, Chang et al.’s index (2000) was used to measure the dispersion of stock returns around the market return, also, the monetary policy variable (growth of liquidity) was used as threshold variable. By choosing this variable as a threshold variable, we can check whether changes in this variable can lead to a transition from a rational regime to a herd regime or not. The results of the study indicate that herd behavior in Tehran Stock Exchange has a variable behavior over time and the linear model is not suitable for investigating such behavior. Also, the results of the research show that based on different values of liquidity growth variable, the behavior of investors changes, so that for monthly liquidity growth values smaller than 2.3%, rational behavior is observed in investment decisions, but with an increase in the growth rate of liquidity and crossing this threshold, over time, herd behavior becomes the dominant behavior in the stock market.

کلیدواژه‌ها [English]

  • Monetary Policy
  • Herding Behavior
  • Tehran Stock Exchange
  • Nonlinear Models
- ابراهیمی‌سروعلیا؛ محمدحسن، (1396). «عوامل تعیین‌کننده رفتار سهامداران جزء در بورس اوراق بهادار تهران برمبنای مدلسازی معادلات ساختاری». دانش سرمایه‌گذاری، 6 (22): 131-145.
- خداپرست‌شیرازی، جلیل؛ سیرانی، محمد؛ و ابوالفتحی، سمیه، (1390). «عوامل مؤثر بر بروز رفتار جمعی بین سهامداران عادی بورس اوراق بهادار تهران». پژوهش‌های حسابداری مالی و حسابرسی (پژوهشنامه حسابداری مالی و حسابرسی)، 3 (11): 78-107.
 
- Adrian, T. & Shin, H. S., (2009). “Money, liquidity, and monetary policy”. American Economic Review99(2): 600-605. Doi: 10.1257/aer.99.2.600.
- Apergis, N.; Christou, C.; Hayat, T. & Saeed, T., (2020). “U.S. Monetary Policy and Herding: Evidence from Commodity Markets”. Atlantic Economic Journal, Springer; International Atlantic Economic Society, 48(3): 355-374. Doi: 10.1007/s11293-020-09680-4.
- Banerjee, A. V., (1992). “A simple model of herd behavior”. The quarterly journal of economics107(3): 797-817.
- Beckmann, J.; Berger, T. & Czudaj, R., (2015). “Does gold act as a hedge or a safe haven for stocks? A smooth transition approach”. Economic Modelling, 48: 16-24. Doi: 10.1016/j.econmod.2014.10.044.
- Bernanke, B. S. & Gertler, M., (1995). Inside the black box: the credit channel of monetary policy transmission (No. w5146). National bureau of economic research.
- Bernanke, B. & Kuttner, K., (2005). “What explains the stock Market’s reaction to Federal Reserve Policy?”. Journal of Finance, 60(10): 1221–1257.
- Bikhchandani, S. & Sharma, S., (2000). “Herd behavior in financial markets”. IMF Staff Papers, 47(2): 279-310.
- Bikhchandani, S.; Hirshleifer, D. & Welch, I., (1992). “A theory of fads, fashion, custom, and cultural change as informational cascades”. Journal of political Economy100(5): 992-1026.
- Brennan, M., (1990). “Agency and Asset Prices”. Finance Working Paper, No. 6-93.
- Chang, E. C.; Cheng, J. W. & Khorana, A., (2000). “An examination of herd behavior in equity markets: An international perspective”. Journal of Banking & Finance24(10): 1651-1679.
- Cont, R. & Bouchaud, J. P., (2000). “Herd behavior and aggregate fluctuations in financial markets”. Macroeconomic dynamics4(2): 170-196. Doi: 10.1017/s1365100500015029.
- Devenow, A. &  Welch, I., (1996). “Rational herding in financial economics”. Eur. Econ. Rev. 40 (3–5): 603-615.
- Ebeahimi Sarve Olia, M. H.; Babajani, J.; Hanafizadeh, P. & Ebadpour, B., (2017). “Assessment of the behavioral determinants of individual investors in Tehran Stock Exchange based on structural equation modeling”. Investment Khnowledg, 6(22): 131-146. [In persian]
- Fama, E. F., (1965). “The behavior of stock-market prices”. The journal of Business, 38(1): 34-105.
- Galariotis, E.; Makrichoriti, P. & Spyrou, S., (2018). “The impact of conventional and unconventional monetary policy on expectations and sentiment”. J. Bank. Finance 86: 1–20. Doi: 10.1016/j.jbankfin.2017.08.014.
- Gleason, K. C.; Mathur, I. & Peterson, M. A., (2004). “Analysis of intraday herding behavior among the sector ETFs”. J. Emp. Finance, 11: 681-694. Doi: 10.1016/j.jempfin.2003.06.003.
- Gong, P. & Dai, J., (2017). “Monetary policy, exchange rate fluctuation, and herding behavior in the stock market”. Journal of Business Research, 76: 34-43. Doi: 10.1016/j.jbusres.2017.02.018
- Hansen, P. R. & Lunde, A., (2005). “A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?”. Journal of applied econometrics20(7): 873-889. Doi: 10.1002/jae.800
- Hirshleifer, D.; Teoh, H. S., (2003). “Herd behavior and cascading in capital markets: a review and synthesis”. Eur. Financ. Manag. 9 (1): 25-66. Doi: 10.1111/1468-36X.00207
- Hwang, S. & Salmon, M., (2004). “Market stress and herding”. Journal of Empirical Finance, 11(4): 585-616. Doi: 10.1016/j.jempfin.2004.04.003
- Hwang, S. & Salmon, M., (2009). Overconfidence, sentiment and beta herding (February 27, 2017). Available at SSRN: https://ssrn.com/abstract=299919
- Jafari, F.; Tehrani, R. & Abbasian, E., (2019). “Impacts of Economic Variables on Herding Behavior in Tehran Stock Exchange Industries”. Journal of Money and Economy, 14 (3): 317-333.
- Jurkatis, S.; Kremer, S. & Nautz, D., (2012). “Correlated trades and herd behavior in the stock market”. SFB 649 Discussion Paper, No. 2012-035, Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk, Berlin.
- Kizys, R.; Tzouvanas, P. & Donadelli, M., (2021). “From COVID-19 herd immunity to investor herding in international stockmarkets: The role of government and regulatory restrictions”. International Review of Financial Analysis, 74: 101663. Doi: 10.1016/j.irfa.2021.101663
- Khaodaparast Shirazi, J.; Sayrani, M. & Abolfathi, S., (2010). “The characteristics of stocks on herding behavior in Tehran stock exchange corporations”. The Financial Accounting and Aduting Researches, 3(11): 87-108. [In persian]
- Kremer, S. & Nautz, D., (2013). “Short-term herding of institutional traders: new evidence from the german stock market”. Eur. Financ. Manag. 19 (4): 730-746. Doi: 10.1111/j.1468-036X.2011.00607.x
- Krokida, S.; Makrychoriti, P. & Spyrou, S., (2020). “Monetary policy and herd behavior: International evidence”. Journal of Economic Behavior and Organization, 170: 386–417. Doi: 10.1016/j.jebo.2019.12.018
- Loayza, N. & Schmidt-Hebbel, K., (2002). “Monetary policy functions and transmission mechanisms: an overview”. Monetary Policy: Rules and Transmission Mechanisms, 1: 1-20.
- Loisel, O.; Pommeret, A. & Portier, F., (2008). “Monetary policy and herd behavior in new-tech investment”. 2008 Meeting Papers, Review of Economic Dynamics.
- Lutz, C., (2015). “The impact of conventional and unconventional monetary policy on investor sentiment”. J. Bank. Finance 61: 89-105. Doi: 10.1016/j.jbankfin.2015.08.019
- Luukkonen, R.; Saikkonen, P. & Teräsvirta, T., (1988). “Testing linearity against smooth transition autoregressive models”. Biometrika75(3): 491-499.
- Lux, T., (1995). “Herd behavior, bubbles and crashes”. Economic Journal, 105(431): 881-896.
- Mand, A. A.; Janor, H.; Rahim, R. A. & Sarmidi, T., (2018). “Determinants of herding behavior in malaysian stock market”. Int.J.Eco. Res, 9 (1): 75-86.
- Mandelbrot, B. B. & Mandelbrot, B. B., (1997). The variation of certain speculative prices (pp. 371-418). Springer New York.
- Meltzer, A. H., (1995). “Monetary, credit and (other) transmission processes: a monetarist perspective”. Journal of economic perspectives9(4): 49-72.
- My, T. N. & Truong, H. H., (2011). “Herding Behavior in an Emerging Stock Market: Empirical Evidence from Vietnam”. Research Journal of Business Management, 5: 51-76. Doi: 10.3923/rjbm.2011.51.76
- Nair, A. M.; Balasubramanian, D. & Yermal, L., (2017). “Factors Influencing Herding Behavior Among Indian Stock Investors”. International Conference on Data Management, Analytics and Innovation (ICDMAI) Zeal Education Society, Pune, India, Feb 24-26, 2017: 326-329. Doi: 10.1109/ICDMAI.2017.8073535
- Nirei, M., (2006). “Threshold behavior and aggregate fluctuation”. Journal of Economic Theory127(1): 309-322. Doi: 10.1016/j.jet.2004.08.006
- Nofsinger, J. R. & Sias, R. W., (1999). “Herding and feedback trading by institutional and individual investors”. The Journal of finance54(6): 2263-2295.
- Roll, R., (1992). “A Mean/Variance Analysis of Tracking Error”. The Journal of Portfolio Management, 18(4): 13-22.
- Rosa, C., (2013). “The financial market effect of FOMC minutes”. Federal Reserve Bank of New York Policy Review, December, 67–81. Available at: https://www.newyorkfed.org/medialibrary/media/research/epr/2013/0913rosa. pdf.
- Scharfstein, D. S. & Stein, J. C., (1990). “Herd behavior and investment”. The American Economic Review: 465-479.
- Shiller, R. J., (2002). “Bubbles, human judgment, and expert opinion”. Financial Analysts Journal, 58(3): 18-26.
- Stauffer, D. & Jan, N., (2000). “Sharp peaks in the percolation model for stock markets”. Physica A: Statistical Mechanics and its Applications, 277(1-2): 215-219. Doi: 10.1016/S0378-4371(99)00587-7
- Stauffer, D. & Sornette, D., (1999). “Self-organized percolation model for stock market fluctuations”. Physica A: Statistical Mechanics and its Applications, 271(3-4): 496-506.
- Teräsvirta, T., (1994). “Specification, estimation, and evaluation of smooth transition autoregressive models”. Journal of the american Statistical association, 89(425): 208-218.
- Tsionas, E. G., (2013). “Revisiting herding behavior: likelihood evidence (February 10, 2013)”. Available at SSRN: https://ssrn.com/abstract=2214580. Doi: 10.2139/ssrn.2214580
- Van Dijk, D., (1999). Smooth transition models: extensions and outlier robust inference (No. 200).
- Wang, D., (2008). “Herd Behavior towards the Market Index: Evidence from 21 Financial Markets”. IESE Research Papers D/776, IESE Business School.
- Welch, I., (1992). “Sequential sales, learning, and cascades”. The Journal of finance47(2): 695-732.
- Wicaksono, R. P. K. & Falianty, T. A., (2022). “Monetary Policy and Herding Behavior: Empirical Evidence From Indonesia Stock Market”. The Indonesian Capital Market Review, 14(1): 5. Doi: 10.21002/icmr.v14i1.1141