تجزیۀ شکاف مخارج برق خانوارها با استفاده از مدل‌های تجزیۀ اکساکا-بلیندر و ماچادو-متا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد، گروه اقتصاد، دانشکدۀ علوم اجتماعی، دانشگاه رازی، کرمانشاه، ایران

2 دانشیار گروه اقتصاد، دانشکدۀ علوم اجتماعی، دانشگاه رازی، کرمانشاه، ایران

چکیده

استفادۀ مؤثر از برق در بخش خانوارها برای افزایش سطح رفاه و تأمین برق موردنیاز صنایع تولیدی به‌عنوان موتور رشد اقتصادی مهم‌ترین هدف کشورها است؛ بنابراین کاهش جزء مصرف برق ناشی از عدم کارایی از اهمیت بالایی برخوردار است؛ در این‌راستا، پژوهش حاضر با استفاده از شواهد آماری هزینه-درآمد خانوارهای ایران برای دورۀ زمانی 1400-1389 به برآورد سهم مصرف ناکارای برق در تفاوت مصرف برق خانوارها می‌پردازد. نتایج مدل‌ تجزیۀ اکساکا-بلیندر نشان می‌دهد که سهم ناکارایی در ایجاد شکاف سهم مخارج برق خانوارها از مقدار 2/87% در سال 1389 به مقدار 5/76% در سال 1400 کاهش یافته است. تجزیۀ ماچادو-متا نشان می‌دهد که سهم تفاوت در ویژگی اجتماعی اقتصادی خانوارها در چندک‌های بالای مصرف برق بالاتر از چندک‌های پایین است و در سال 1400 نسبت به سال 1389 افزایش یافته است؛ بنابراین نقش الگوی مصرفی خانوارها مهم‌تر از نرخ دسترسی به وسایل با انرژی‌بری بالاتر است؛ بنابراین ایجاد سیستم قیمت‌گذاری پله‌ای مهم‌ترین سیاست برای کاهش مصرف برق ناکارا است؛ علاوه‌براین، برآورد رگرسیون چندک نشان می‌دهد که درآمد و بعد خانوار اثر منفی و مالکیت و اندازۀ مسکن و دسترسی به لوازم خانگی اثر مثبت و معناداری را بر سهم مخارج برق خانوارها دارد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Decomposition of the Gap of Household Electricity Expenditure Using Blinder–Oaxaca and Machado-Mata Decomposition Models

نویسندگان [English]

  • Sahar Tighi 1
  • Shahram Fattahi 2
  • Ali Falahati 2
1 Ph.D. Candidate in Economics, Department of Economics, Faculty of Social Sciences, Razi University, Kermanshah, Iran.
2 Associate Professor, Department of Economics, Faculty of Social Sciences, Razi University, Kermanshah, Iran
چکیده [English]

The efficient use of electricity in the household sector to ensure maximum welfare of households and supply of electricity required by industry as an engine of economic growth is the important goal of countries. Therefore, reducing the inefficiency of energy consumption by households is of high importance. The present study uses statistical evidence of expenditure-income of Iranian households for the period 2010–2021 to estimate the share of energy inefficiency in the households’ energy consumption differences. The results of Blinder–Oaxaca decomposition show that the share of inefficiency in creating a gap in the share of household electricity costs has decreased from 87.2% in 2010 to 76.5% in 2021. The results of Machado-Mata decomposition show that in the upper quantiles of the share of electricity consumption, the share of the difference in the socio-economic characteristics of households is more than that of the lower quantiles and this share has increased in 2021 as compared to 2010. Therefore, the role of household consumption pattern is more than the rate of access to high-energy appliances, so providing a step-by-step pricing system with an exponential rate for electricity consumption is an effective policy to reduce inefficiency in electricity consumption. Furthermore, quantile regression estimation shows that household income and size have a negative effect, and ownership and size of housing and access to household appliances have a positive significant effect on the share of household electricity costs.

کلیدواژه‌ها [English]

  • Decomposition Models
  • Electricity Consumption Inefficiency
  • Quantile Regression
- Akbari, N.; Talebi, H. & Jalaei, A., 2016, “Investigating the Social and Cultural Factors Affecting Household Energy Consumption after the Implementation of the Law on Targeted Subsidies (Case Study: Isfahan)”. Applied Sociology, 64: 1–26.
- Amiri, H.; Yazdanikia, H. & Mohammadian, A., 2012, “The Relationship between Energy Consumption and Income in the Domestic and Commercial Sectors of Iran Using the Approach of Smooth Transition Regression (STR) Model”. Quarterly Journal of Economic Development Research, 8: 65–84.
- Boogen, N., 2017, “Estimating the potential for electricity savings in households”. Energy Economics, 63: 288-300.‏
- Chen, J. J. & Pitt, M. M., 2017, “Sources of change in the demand for energy by Indonesian households: 1980–2002”. Energy Economics61: 147-161.‏
- Gholizadeh, A. A. & Barati, J., 2011, “Analysis of Factors Affecting Household Energy Consumption and Household Electricity Consumption in Iran, with Emphasis on Productivity”. Quarterly Journal of Modern Economics and Trade, 25/26: 145–167.
- Gram-Hanssen, K., 2013, “Efficient technologies or user behavior, which is the more important when reducing households’ energy consumption?”. Energy Efficiency, 6(3), 447-457.‏
- Haben, S.; Rowe, M.; Greetham, D. V.; Grindrod, P.; Holderbaum, W.; Potter, B. & Singleton, C., 2013, Mathematical solutions for electricity networks in a low carbon future.
- Hasan, S. A. & Mozumder, P., 2017, “Income and energy use in Bangladesh: A household level analysis”. Energy Economics65: 115-126.‏
- Huang, W. H., 2015, “The determinants of household electricity consumption in Taiwan: Evidence from quantile regression”. Energy, 87: 120-133.‏
- Huebner, G.; Shipworth, D.; Hamilton, I.; Chalabi, Z. & Oreszczyn, T., 2016, “Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviors and attitudes”. Applied energy177: 692-702.‏
- Jones, R. V.; Fuertes, A. & Lomas, K. J., 2015, “The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings”. Renewable and Sustainable Energy Reviews43: 901-917.‏
- Kim, M. J., 2018, Characteristics and determinants by electricity consumption level of households in Korea. Energy Reports4: 70-76.‏
- Labandeira, X.; Labeaga, J. M. & López-Otero, X., 2012, “Estimation of elasticity price of electricity with incomplete information”. Energy Economics, 34(3): 627-633.
- Long, C.; Mills, B. F.; Schleich, J., 2018, “Characteristics or culture? Determinants of household energy use behavior in Germany and the USA”. Energy Efficiency, 11(3): 777-98.
- McLoughlin, F.; Duffy, A. & Conlon, M., 2012, “Characterising domestic electricity consumption patterns by dwelling and occupant socio-economic variables: An Irish case study”. Energy and buildings, 48: 240-8
- Morley, J. & Hazas, M., 2011. The significance of difference: Understanding variation in household energy consumption.
- Nesbakken, R., 1999, “Price sensitivity of residential energy consumption in Norway”. Energy economics, 21(6): 493-515.
- Oaxaca, R., 1973, “Male-female wage differentials in urban labor markets”. International economic review: 693-709.‏
- Papageorgiou, G.; Efstathiades, A.; Poullou, M. & Ness, A. N., 2020, “Managing household electricity consumption: a correlational, regression analysis”. International Journal of Sustainable Energy: 1-11.‏
- Rahimi, A.; Morovat, H. & Faridzadeh, A., 2016, “The Role of Attitudes and Beliefs on Household Electricity Consumption in Iran”. Iranian Journal of Energy Economics, 21: 129–162.
- Sakah, M.; du Can, S. D. L. R.; Diawuo, F. A.; Sedzro, M. D. & Kuhn, C., 2019, “A study of appliance ownership and electricity consumption determinants in urban Ghanaian households”. Sustainable Cities and Society, 44: 559-581.‏
- Salari, M. & Javid, R. J., 2017, “Modeling household energy expenditure in the United States”. Renewable and Sustainable Energy Reviews, 69: 822-832.‏
- Su, Y. W., 2019, “Residential electricity demand in Taiwan: Consumption behavior and rebound effect”. Energy policy, 124: 36-45.‏
- Trotta, G., 2018, “Factors affecting energy-saving behaviors and energy efficiency investments in British households”. Energy Policy, 114: 529-539.‏
- Wiesmann, D.; Azevedo, I. L.; Ferrão, P. & Fernández, J. E., 2011, “Residential electricity consumption in Portugal: Findings from top-down and bottom-up models”. Energy Policy, 39(5): 2772-2779.