معرفی یک سیستم پیش‌بینی مناسب برای برآورد تقاضای درمان در بیمارستان امام رضا(ع) ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه اقتصاد دانشگاه ارومیه

2 کارشناس ارشد اقتصاد دانشگاه ارومیه

چکیده

بیمارستان­ها وظیفه حفظ سلامت افراد را بر عهده داشته و قسمت اعظم هزینه­های سلامت را به خود اختصاص می­دهند. شواهد حاکی از آن است که چشم­انداز وسیعی برای ارتقاء و اعتلای منابع بیمارستان­ها (مالی و انسانی) وجود دارد. آگاهی و اطلاع از مقدار تقاضای آینده، مدیریت بهینه این منابع و کیفیت خدمات‌رسانی در حوزه سلامت را تا حد زیادی تضمین می­نماید. هدف اصلی این مطالعه بررسی مدل­های خطی (ARIMA) و غیرخطی (شبکه عصبیMLP) در پیش­بینی تقاضای تعداد افراد بیمار جهت بستری در بیمارستان امام رضا (ع) ارومیه، در بازه­های زمانی ساعتی، روزانه، هفتگی و ماهانه و همچنین به تفکیک بخش­های مختلف بیمارستان است. نتایج این پژوهش بیانگر آن است که مدل غیرخطی شبکه­ی عصبی مصنوعی مبتنی بر الگوریتم MLP، دارای عملکرد بهتری در پیش­بینی تقاضای درمان (در دوره نمونه) بوده و قادر است پیش­بینی­های دقیق­تری نسبت به مدل ARIMA ارائه دهد. مدل شبکه عصبی MLP  با متوسط درصد خطای 96/24% نسبت به مدل ARIMA با متوسط درصد خطای کل 73/26% دارای قدرت پیش­بینی بالایی می­باشد. همچنین نتایج پیش­بینی­های بخش کودکان و نوزادان نشان می­دهد که مدل خطی ARMA دارای قدرت پیش­بینی بالاتری نسبت به مدل غیرخطی شبکه عصبی MLP می­باشد که دلیل این ناسازگاری با فرضیه­های تحقیق را می­توان در واریانس پایین داده­های این بخش جستجو کرد. 

کلیدواژه‌ها


عنوان مقاله [English]

Introducing an appropriate forecasting system to estimate the treatment demand at Imam Reza hospital of Urmia

نویسندگان [English]

  • kiuomars shahbazi 1
  • akbar pilevar soltanahmadi 2
چکیده [English]

The hospitals are responsible for maintaining the health of the population and devote himself a large part of health expenditure. Evidence shows that there is a vast prospect to improve and promote hospitals resources (financial and human). Awareness of the amount of future demand highly ensures optimal management of resources and quality of services in the health field. The aim of this study is to investigate the linear (ARIMA) and nonlinear (neural network MLP) models to estimate the treatment demand at Imam Reza hospital of Urmia, using data at different time intervals such as daily, weekly and monthly in different sections of the hospital. The results of this study indicate that ANN MLP nonlinear model has a good performance in predicting treatment demand and it is capable to provide more accurate forecasts than ARIMA model. Neural network MLP model with an average error of 24.96% compared to ARIMA model with an average error of 26.73% has a high predictive power. Also the estimation results of pediatric ward indicate that the ARIMA model compared to Neural network MLP model has more predictive power, the reason for this inconsistency with research hypotheses must be sought in low variance of this section.

کلیدواژه‌ها [English]

  • Treatment demand forecasting
  • Emergency Department
  • ARMA Model
  • Neural –Networks
آقایی، کیومرث و پورمیری، بهروز (1385)؛ پیش­بینی روند قیمت فولاد با استفاده از شبکه­های عصبی مصنوعی و مقایسه نتایج آن با روش آریما، فصلنامه بررسی­های اقتصادی، دوره 3، شماره1: 4-5.
آیین‌نامه نحوه تأسیس و اداره بیمارستان‌ها، شماره نامه 5234، تاریخ 21/5/1376.
ابریشمی، حمید؛ جبل عاملی، فرخنده؛ ابوالحسنی، معصومه و جوان، افشین (1393)؛ عملکرد دو روش ARIMA و شبکه عصبی GMDH در پیش بینی تقاضای گاز طبیعی در بخش‌های مختلف (ایران-1380-1389)، فصلنامه مطالعات اقتصادی کاربردی ایران، سال سوم، شماره 12: 33-57.
جعفرنژاد، احمد و محسن سلیمانی (1390)؛ پیش­بینی تقاضای تجهیزات پزشکی بر اساس شبکه­های عصبی مصنوعی و روش ARIMA، فصلنامه پژوهش­ها و سیاست­های اقتصادی، سال نوزدهم، شماره57: 3-4.
فیاض­بخش، احمد (1389)؛ بررسی آگاهی و نگرش مدیران ارشد و میانی در امکان استفاده از مدیریت کیفیت فراگیر در بیمارستان، مجله تحقیقات سلامت، شماره 3: 5-8.
قاسمی، عبدالرسول؛ اسد پور، حسن و شاصادقی، مختار (1379)؛ کاربرد شبکه عصبی در پیش­بینی سری­های زمانی و مقایسه آن با مدل آریما، پژوهشنامه بازرگانی، 120: 14-87.
گزارش نهایی چهل و هشتمین اجلاس رؤسای دانشگاه‌ها، دانشکده‌های علوم پزشکی و خدمات بهداشتی درمانی کشور. سیمای فرهنگ، 1382.
Abraham, B. and Ledolter, J. (1986); Forecast functions implied by autoregressive integrated moving average models and other related forecast procedures. International Statistical Review/ Revue Internationale de Statistique, 51-66.
Aburto, L. and Weber, R. (2007); Improved supply chain management based on hybrid demand forecasts. Applied Soft Computing, 7(1), 136-144.
Armstrong, J. S. (2001); Principles of forecasting: a handbook for researchers and practitioners (Vol. 30): Springer Science & Business Media.
Atiya, A. F. (2001); Bankruptcy prediction for credit risk using neural networks: A survey and new results. Neural Networks, IEEE Transactions on, 12(4), 929-935.
Bosarge, W. (1993); Adaptive processes to exploit the nonlinear structure of financial markets. Neural Networks in Finance and Investing. Probes Publishing, 371-402.
Fausett, L. V., & Hall, P. (1994); Fundamentals of neural networks: architectures, algorithms, and applications (Vol. 40): Prentice-Hall Englewood Cliffs.
Flores, J. J., Graff, M., & Rodriguez, H. (2012); Evolutive design of ARMA and ANN models for time series forecasting. Renewable Energy, 44, 225-230.
Garcia, K. A. (2011); Using a Randomized Regression Approach to Estimate Hospital Admissions to Reduce Emergency Department Holding. Citeseer.  
Hæke, C. and Helmenstein, C. (1996); Neural networks in the capital markets: An application to index forecasting. Computational Economics, 9(1), 37-50.
Hill, T.; Marquez, L.; O'Connor, M. and Remus, W. (1994); Artificial neural network models for forecasting and decision making. International Journal of Forecasting, 10(1), 5-15.
Hobbs, B. F., Helman, U., Jitprapaikulsarn, S., Konda, S. and Maratukulam, D. (1998); Artificial neural networks for short-term energy forecasting: Accuracy and economic value. Neurocomputing, 23(1), 71-84.
Huang, W.; Lai, K. K.; Nakamori, Y. and Wang, S. (2004); Forecasting foreign exchange rates with artificial neural networks: a review. International Journal of Information Technology & Decision Making, 3(01), 145-165.
Isaaks, E. H. and Srivastava, R. M. (1989); An introduction to applied geostatistics.
Kohzadi, N., Boyd, M. S., Kaastra, I., Kermanshahi, B. S. and Scuse, D. (1995); Neural networks for forecasting: an introduction. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, 43(3), 463-474.
Kuan, C. M., and White, H. (1994); Artificial neural networks: an econometric perspective∗. Econometric Reviews, 13(1), 1-91.
Kuo, R. (2001); A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm. European Journal of Operational Research, 129(3), 496-517.
Kuo, R. J.; Wu, P. and Wang, C. (2002); An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination. Neural networks, 15(7), 909-925.
Law, R. and Au, N. (1999); A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20(1), 89-97.
Ledolter, J. (1989); The effect of additive outliers on the forecasts from ARIMA models. International Journal of Forecasting, 5(2), 231-240.
Lee, T. H.; White, H. and Granger, C. W. (1993); Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests. Journal of Econometrics, 56(3), 269-290.
Leegon, J.; Jones, I.; Lanaghan, K. and Aronsky, D. (2006); Predicting hospital admission in a pediatric emergency department using an artificial neural network. Paper presented at the AMIA Annual Symposium Proceedings.
Li, J.; Guo, L. and Handly, N. (2009); Hospital admission prediction using pre-hospital variables. Paper presented at the Bioinformatics and Biomedicine, 2009. BIBM'09. IEEE International Conference on.
Liu, Y.; Wang, D. and Ding, F. (2010); Least squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data. Digital Signal Processing, 20(5), 1458-1467.
Moshiri, S. and Cameron, N. E. (1999); Neural network versus econometric models in forecasting inflation. Journal of forecasting, 19.
Moshiri, S.; Cameron, N. E. and Scuse, D. (1999); Static, dynamic, and hybrid neural networks in forecasting inflation. Computational Economics, 14(3), 219-235.
Nelson, C. R. and Plosser, C. R. (1982); Trends and random walks in macroeconmic time series: some evidence and implications. Journal of monetary economics, 10(2), 139-162.
Palmer, A.; Montano, J. J. and Sese, A. (2006); Designing an artificial neural network for forecasting tourism time series. Tourism Management, 27(5), 781-790.
Porter, M. and Stern, S. (2001); Location matters. Sloan Management Review, 42(4), 28-36.
Reddy, T. A. (2011); Applied data analysis and modeling for energy engineers and scientists: Springer Science & Business Media.
Sermpinis, G.; Dunis, C.; Laws, J. and Stasinakis, C. (2012); Forecasting and trading the EUR/USD exchange rate with stochastic Neural Network combination and time-varying leverage. Decision Support Systems, 54(1), 316-329.
Sözen, A.; Arcaklioğlu, E. and Özkaymak, M. (2005); Turkey’s net energy consumption. Applied Energy, 81(2), 209-221.
Tang, Z.; de Almeida, C. and Fishwick, P. A. (1991); Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation, 57(5), 303-310.
Trippi, R. R. and Turban, E. (1992); Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real World Performance: McGraw-Hill, Inc.
Valipour, M.; Banihabib, M. E. and Behbahani, S. M. R. (2013); Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly in flow of Dez dam reservoir. Journal of Hydrology, 476, 433-441.
White, H. (1988); Economic prediction using neural networks: The case of IBM daily stock returns. Paper presented at the Neural Networks, 1988, IEEE International Conference on.
“MATLAB Tutorial”, http://www.mathworks.com.