عوامل تعیین‌کننده صادرات با تکنولوژی بالا در کشورهای درحال‌توسعه مبتنی بر رویکرد متوسط گیری مدل بیزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه اقتصاد دانشگاه تهران

2 کارشناس ارشد توسعه اقتصادی و برنامه‌ریزی دانشگاه تهران

3 گروه اقتصاد، واحد پروفسور حسابی تفرش، دانشگاه آزاد اسلامی، تفرش، ایران

چکیده

امروزه صادرات را به‌عنوان محور رشد و توسعه اقتصادی معرفی می‌کنند. کشورهایی مانند کره جنوبی، مالزی و ترکیه و هند از استراتژی توسعه صادرات برای بالا بردن رشد اقتصادی خود بهره برده و به نتایج رضایت‌بخشی دست‌یافته‌اند. با توجه به اهمیت نقش صادرات در افزایش رشد اقتصادی، شناسایی عوامل مؤثر بر صادرات ضروری است. بر این اساس در مقاله حاضر نقش عوامل تأثیرگذار بر صادرات با تکنولوژی بالا را مورد مطالعه قرار داده‌ایم. به این منظور، پس از شناسایی متغیرهای مؤثر بر صادرات با استفاده از روش «میانگین‌گیری مدل بیزین» و «متوسط‌گیری والس» به بررسی جهت و شدت تأثیر این متغیرها بر صادرات پرداخته‌ایم. نتایج حاصل از برآورد مدل نشان می­دهد که کیفیت نهادی، سرمایه انسانی و واردات با احتمال قطعی مهم‌ترین عوامل تأثیرگذار بر صادرات با تکنولوژی بالا در کشورهای درحال‌توسعه هستند؛ اما متغیر قیمتی نرخ ارز حقیقی مؤثر برخلاف آنچه الگوهای استاندارد پیش‌بینی می‌کنند کمترین اهمیت را در پیش‌بینی تحولات صادرات با تکنولوژی بالا داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

The determinants of high-tech export in developing countries: based on Bayesian model averaging

نویسندگان [English]

  • mohsen mehrara 1
  • samaneh sijani 2
  • abbas rezazadeh karsalari 3
چکیده [English]

Aim: The aim of the study is to examine the determinants of high-tech exports in developing countries during the period 1996 to 2013. One of the most important challenges of the empirical modeling is the selection of the potential variables that can be included in the econometric model, especially when there is a very wide range of explanatory variables. There is no acceptable way to solve this problem in the conventional econometric models. This article tries to fill this gap using Bayesian Model averaging and WALS econometrics approaches.
Method: In this article we studied the determinants of export for 24 developing countries during the period 1996 to 2013 based on Bayesian Model Averaging (BMA) and Weighted-Average Least Square (WALS) technique.
Findings: The institutional quality (with an average coefficient of 2.12), human capital (0.85), the ratio of imports to GDP (0.04) and logarithm of GDP (1.87) have definite effects on the exports with inclusion probability of 100%. The sign of these coefficients are as expected. The human capital implies the creation of the endogenous knowledge. The knowledge-based capital is one of the key inputs for productive activities according to the endogenous growth theories so that more human capital improves the quality and productivity and ultimately leads to greater exports. A country which has a greater GDP, can supply more various products. Therefore, the trade greatly depends on the size of the country in terms of GDP. In fact, economies with higher income are more interested in specialization and sophistication of the products and have more trades. Import as an important channel of international knowledge spillover has a positive effect on the high-tech export. Import also affects the host country's export through various channels. In the long term, the countries can accelerate export sophistication through the dissemination of the foreign knowledge. Imports of intermediate and capital goods causes the transfer of the new technology into the country and reduce their production costs leading to high-tech exports. Some developing countries import large quantities of intermediate and tech-intensive goods and export them after simple assembling and processing the complex final products. The existence or establishment of appropriate institutions can empower the endogenous growth and productivity and therefore provide competitiveness and sustainable growth in a country's exports. Especially, improving the institutional quality and the rule of law increases the security of property rights and contracts enforcements and therefore creates a safe environment for the development of new markets, strengthening human capital, domestic research and development and information and communication technology. It also increases the rate of return of the capitals and the incentives for domestic and foreign investments through reducing the risk, and ultimately fortifies the competitiveness and exports. The ratio of capital to labor as well as research and development expenditure to GDP with the probability of 99% have negative effects on the high-tech exports. The weighted average of these two variables' coefficients are respectively -0.68 and -0.89. The increase of the ratio of capital to labor and research and development expenditure in the developing countries (under study) with poor production structures do not have expected positive effect on increasing the high-tech exports. If the necessary institutional infrastructures are not provided, the development of the physical capital and even the research and development expenditures encloses the country's natural resource-based and traditional industries. Other explanatory variables including the land area per capita, the real effective exchange rate, the population, the ratio of FDI to GDP and inflation due to the low inclusion probability do not affect the exports.
Conclusion: The traditional trade theories lack essential potentials to explain the tech-intensive exports in the developing countries. However, the institutions, the efficient human capital, higher GDP, the openness and the easier access to the foreign knowledge and investment can explain the behavior of the tech-intensive exports in the developing countries, confirming the main hypothesis of this article. Of course good governance maybe not perfect proxy of Institutional quality that should be addressed in future researches.

کلیدواژه‌ها [English]

  • high technology export
  • Bayesian model averaging
  • WALS averaging
  • Developing Countries
امینی، علیرضا؛ خسروی‌نژاد، علی‌اکبر و علیزاده، زهره (1391). «تحلیل تأثیر توسعه صادرات بر اشتغال؛ مطالعه موردی صنایع با فناوری بالا در ایران»، فصلنامه علوم اقتصادی، 6(19): 174-135.
حسینی، میر عبدالله و حسینی، میر قادر (1388). «تجربیات منتخبی از کشورهای موفق در توسعه صادرات»، مجله بررسی­های بازرگانی، شماره 34، فروردین و اردیبهشت. 18-2.
شاکری، عباس (1383). «عوامل تعیین‌کننده صادرات غیرنفتی ایران»، فصلنامه پژوهش­های اقتصادی ایران، 21: 23-50.
رحمانی، تیمور (1388). اقتصاد کلان، تهران: انتشارات برادران، چاپ چهاردهم.
کازرونی، علیرضا و نصیب‌پرست، سیما (1393). «عوامل تعیین‌کننده صادرات در کشورهای درحال‌توسعه: رویکرد اقتصادسنجی بیزینی»، فصلنامه برنامه‌ریزی و بودجه، 19(4): 64-35.
مهرآرا، محسن و غضنفری، آرزو (1393)؛ بررسی علل تورم در اقتصاد ایران مبتنی بر رویکرد متوسط‌گیری بیزین، راهبرد اقتصادی، 3(10): 37-7.
نهاوندیان، محمد و افقهی، بابک (1393)، "عوامل مؤثر در توسعه خدمات با فناوری بالا در جمهوری اسلامی ایران، فصلنامه پژوهش‌های اقتصادی"، 14(4): 56-23.
نیلی، مسعود (1394)؛ «چرایی بروز رکود تورمی و جهت­گیری­های برون‌رفت از آن»، وبگاه رسمی دولت جمهوری اسلامی ایران،http://www.dolat.ir .
Bikker, J. A. (1987). “An International Trade Flow With Substitution: An Extension of the Gravity Model”, KYKLOS, 40: 315-37.
Blum, B. S. and Goldfarb, A. (2006), “Does the Internet Defy the Law of Gravity?”, Journal of International Economics, 70(2): 384-405.
Brada, J. C. and Mendez, J. A. (1983). “Regional Economic Integration and the Volume of Intra-Regional Trade: A Comparison of Developed and Developing Country Experience”, KYKLOS, 36: 92-105.
Brunnschweiler, C. N. (2008). “Cursing the blessing? Natural resources abundance, institutions and economic growth”, World development, 36(3): 399-419.
Coe, D. T. and Helpman, E. (1995). “ International R&D spillovers”, European Economic Review, 39: 859-887.
Dreze, J., (1961). “Leo Exportation Intra-CEE en 1958 et al Position Belge”, Recherches Economiques de Louvain (louvin), 27: 7171-738.
Fernandez, C.; Ley, E. and Steel, M. (2001b). “Benchmark priors for Bayesian model averaging”, Journal of Econometrics, 100: 381-427.
Filippini, C. and Molini, V. (2003). “The Determinants of East Asian Trade Flows: A Gravity Equation Approach”, Journal of Asian Economics, 14(5): 695-711
Frankel, J. (1997). “Regional Trading Blocs in the World Economic System”, Washington, DC: Institute for International Economics.
Fu, X. (2011). “Processing-trade, FDI and exports of indigenous firms: Firm-level evidence from high-technology industries in China”. Oxford Bulletin of Economics and Statistics, 73(5): 792-817.
Fu, X. and Gong, Y. (2011). “Indigenous and foreign innovation efforts and drivers of technological upgrading: Evidence from China”. World Development, 37(9): 1213-1225.
Hausmann, R.; Hwang, J. and Rodrik, D. (2007). “What you export matters”, Journal of Economic Growth, 12: 1-25.
International Monetary Fund. (2008); Word economic outlook, January.
Jafari, Y.; Mohd Adib, I. and Sadegh Kouhestani, M. (2011). “Determinants of Trade Flows among D8 Countries: Evidence from the Gravity Model”, Journal of Economic Cooperation and Development, 32: 21-38.
Jeffreys, H. (1961). “Theory of probability”, 3rd Ed. London: Oxford University Press.
Karemera, D. and Wilbur, I., Smith, K. O., Cole, J. A. (1999). “A Gravity Model Analysis of the Benefits of Economic Integration in the Pacific Rim”, Journal of Economic Integration, 114(3): 347-67.
Koop, G. (2003). “Bayesian Econometrics”. John Wiley & Sons Ltd, England.
Krugman, P. (1980). “Scale economies, product differentiation, and the pattern of trade”, American Economic Review, 70: 950-959.
Krugman, P. (1991). “Geography and trade”, Cambridge, MIT Press.
Leamer, E. (1978). “Specification Searches”, New York: John Wiley & Sons.
Leamer, E. E.; Maul, H.; Rodriguez, S. and Schott, P.K. (1999). “Does natural resource abundance increase Latin American income inequality?”, Journal of Development Economics, 59(1): 3-42.
Lederman, D. and Maloney, W. (2003). “Trade structure and growth”, Office of Chief Economist, LCR, The World Bank (mimeo).
Linneman, H. (1966). “An Econometrics Study of International Trade Flows” ,  Amsterdam: North Holland.
Lo, D. and Chan, M. H. T. (1998). “Machinery and China’s nexus of foreign trade and economic growth”, Journal of International Development, 10(6): 733-749.
Loungani, P.; Mody, A. and Razin, A. (2002). “The Global Disconnect: The Role of Transactional Distance and Scale Economies in Gravity Equations”, Scottish Journal of Political Economy, 49(5): 526-543
Lucas, R. E. (1988). “On the mechanics of economic development”, Journal of Monetary Economics, 22: 3-42.
Mathur, S. K. (1999). “Pattern of International Trade, New Trade Theories and Evidence from Gravity Equation Analysis”, The Indian Economic Journal, 47(4): 68-88.
Oguledo, V. I. and Macphee, C. R. (1994). “Gravity Models: A Reformulation and an Application to Discriminatory Trade Arrangements”, Applied Economics, 26: 107-20.
Paas, T. (2000). “Gravity Approach for Modeling Trade Flows between Estonia and the Main Trading Partners”, Working Paper, No. 721, Tartu University Press, Tartu.
Poirier, D. (1995). “Intermediate Statistics and Econometrics: A Comparative Approach”. Cambridge: The MIT Press.
Posner, M. V. (1961). “International Trade and Technical changes”, Oxford Economic Papers, 13: 323-341.
Raftery, A. E.; Madigan, D. and Hoeting, J. A. (1999). “Bayesian Model Averaging for Linear Regression Models.”, Journal of The American Statistical Association, 92(437): 79-191.
Romer, P. (1990). “Endogenous technical change”, Journal of Political Economy, 98, S71-S102.
Sachs, J. D. and Warner, A.M. (1999). “The big push, natural resource booms and growth”, Journal of Development Economics, 59(1): 43-76.
Sachs, J. D. and Warner, A. M. (2001). “Natural resources and economic development: The curse of natural resources”, European Economic Review, 45: 827-838.
Schott, P. (2008). “The relative sophistication of Chinese exports”, Economic Policy, 1: 5-49.
Sapir, A. (1981). “Trade Benefits under the EEC Generalized System of Preferences”, European Economic Review, 15: 339-455.
Stijns, J.P.C. (2005). “Natural resource abundance and economic growth revisited” Resources Policy, 30: 107-130.
Vernon, R. (1966). “International Investment and International Trade in the Product Cycle”, Quarterly Journal of Economics, 80: 190-207.
Wasserman, L. (2000). “Bayesian Model Selection and Model Averaging”. Journal of Mathematical Psychology, 44: 92-107
Xu, B. (2010). “The sophistication of exports: Is China special?”. China Economic Review, 21(3): 482-493.