- Adrian Cantemir Calin & Tiberiu Diaconescu & Oana – Cristina Popovici, (2014). “Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion”. Computational Methods in Social Sciences (CMSS), 2(1): 42-47. https:// RePEc/ntu:ntcmss/1-14-042.
- Awartani, B. & Corradi, V., (2005). “Predicting the Volatility of the S&P-500 Stock Index via GARCH Models: The Role of Asymmetries”. International Journal of Forecasting. 21(1): 167-183. https://doi.org/10.1016/j.ijforecast.2004.08.003.
                                                                                                                - Bergman, M. & Hansson, J., (2005). “Real Exchange Rates and Switching Regimes”. Journal of International Money and Finance, 24(3): 121-138. https://doi.org/10.1016/j.jimonfin.2004.10.002.
                                                                                                                - Bollerslev, T., (1986). “Generalized Autoregressive Conditional Heteroscedasticity”. Journal of Econometrics, 31(2): 307-327. https://doi.org/10.1016/0304-4076(86)90063-1.
                                                                                                                - Bowerman, B. L. & Richard T. O., (1979). Time Series and Forecasting: An Applied Approach. University of Michigan, New York: Duxbury Press.
- Box, G. & Jenkins, G., (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day Pub.
- Bradfield, J., (2007). Introduction to the Economics of Financial Markets. Oxford University Press.
- Brooks, C., (2008). Introductory to Econometric for Finance. The ICMA Centre, University of Reading, 2nd Edition. Cambridge University Press.
- Calin, A. C., Diaconescu, T. & Popovici, O. C., (2014). “Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discuss”. CMSS, 2(1).
- Clements, M. P. & Smith, J., (1999). “A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models”. Journal of Applied Econometrics, 14(2): 123-141. https:// https://doi.org/10.1002/(SICI)1099-1255(199903/04).
                                                                                                                - De Gooijer J. G. & Kumar, K., (1992). “Some Recent Development in Non-Linear Time Series Modeling, Testing and Forecasting”. International Journal of Forecasting, 8(2): 135-156. https://doi.org/10.1016/0169-2070(92)90115-P.
                                                                                                                - Dickey, D. A. & Fuller, W. A., (1979). “Distribution of the Estimators for Autoregressive Time Series with a Unit Root”. Journal of the American Statistical Association, 74(366): 427-431. https://doi.org/10.2307/2286348.
                                                                                                                - Diebold, F. & Mariano, R., (1995). “Comparing Predictive Accuracy”. Journal of Business and Economic Statistics, 13(3): 253:263. https://doi.org/10.2307/1392185
- Engel. C., (1994). “Can the Markov Switching Model Forecast Exchange Rates”. Journal of International Economics, 36(1): 151–165. https://doi.org/10.1016/0022-1996(94)90062-0.
                                                                                                                - Engle, R. F., (1982). “Autoregressive Conditional Heteroscedasticity with Estimate of the Variance of the United Kingdom Inflation”. Econometrica, 50(4): 987-1007. https://doi.org/10.2307/1912773.
- Engle, R. F., Lilien, D.M. & Robbins, R. P., (1987). “Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model”. Econometrica, 55(2): 391-407. https://doi.org/10.2307/1913242.
- Faria, E. L., Albuquerque, M. P., Gonzalez, J. L., Cavalcante, J. T. P. & Albuquerque, M., (2009). “Predicting the Brazillian Stock Market through Neural Networks and Adaptive Exponential Smoothing Methods”. Expert Systems with Applications, 36(10): 12506-12509. https://doi.org/10.1016/j.eswa.2009.04.032.
                                                                                                                - Gajdosikova, D., Michulek, J. & Tulyakova, I., (2025). “AI-Based Bankruptcy Prediction for Agricultural Firms in Central and Eastern Europe”. International Journal of Financial Studies, 13(3): 1-35. https://doi.org/10.3390/ijfs13030133.
                                                                                                                - Hosseinidoust, S. E., Fotros, M. H., & Massahi, S., (2016). “Application of Dynamic Parametric and Non-Parametric Systems in Stock Market Return Forecasting: Case Study of Tehran Stock Market”. Quarterly Journal of Fiscal and Economic Policies, 3(12): 125-148. http://qjfep.ir/article-1-289-en.html . (In Persian)
- Hyndman, R. J., Koehler, A. B., Snyder, R. D. & Grose, S., (2002). “A State Space Frame-work For Automatic Forecasting Using Exponential Smoothing Methods”. International Journal of Forecasting, 18(3): 439–454. https://doi.org/10.1016/S0169-2070(01)00110-8.
                                                                                                                - Jin, B., & Xu, X., (2025). “Predictions of Residential Property Price Indices for China via Machine Learning Models”. Quality & Quantity: International Journal of Methodology, 59(2): 1481-1513. https://doi.org/10.1007/s11135-025-02080-3.
- Khadiri, H., Oukhouya, H. & Belkhoutout, K., (2025). “A comparative Study of Hybrid and Individual Models for Predicting the Moroccan MASI Index: Integrating Machine Learning and Deep Learning Approaches”. Scientific African, 28(2). https://doi.org/10.1016/j.sciaf.2025.e02671.
                                                                                                                - Kurani, A., Doshi, P., Vakharia, A. & Shah, M., (2023). “A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting”. Annals of Data Science, 10(1): 183-208. https://doi.org/ 10.1007/s40745-021-00344-x. 
- Leung, M. T., Daouk, H. & Chen, A. S., (2000). “Forecasting Stock Indices: A Comparison of Classification and Level Estimation Models”. International Journal of Forecasting, 16(2): 173-190. http://dx.doi.org/10.2139/ssrn.200429.
- Moha Tahir Ismail, Z. I., (2006). “Modeling Exchange Rate Using Regime Switching Models”. Sains Malaysiana, 35(2): 55-62. https://www.researchgate.net/publication/232275538.
- Pattanayak, A. M., Swetapadma, A. & Sahoo, B., (2024). “Exploring Different Dynamics of Recurrent Neural Network Methods for Stock Market Prediction - A Comparative Study”. Applied Artificial Intelligence, 38(1). https://doi.org/10.1080/08839514.2024.2371706.
- Peel, D. A. & Speight, A. E. H., (1998). “Threshold Nonlinearities in Output: Some International Evidence”. Applied Economics, 30(3): 323–333. https://doi.org/10.1080/000368498325840.
- Potter, S. M., (1995). “A Nonlinear Approach to US GNP”. Journal of Applied Econometrics, 10(2): 109–125. http://www.jstor.org/stable/2284968.
- Song, D. & Song, D., (2024). “Stock Price Prediction based on Time Series Model and Long Short-term Memory Method”. Highlights Business, Econ. Manage, 24(3):  1203-1210. https://doi.org/10.54097/e75xgk49.  
                                                                                                                - Terasvirta, T, C. L. & Granger, C., (1993). “Power of the Neural Network Linearity Test”. Journal of Time Series Analysis, 14(2): 209:220. https://doi.org/10.1111/j.1467-9892.1993.tb00139.x.
                                                                                                                - Terence Tai-Leung, Ch., Lam, T.-H. & Hinich, M. J., (2009). “Are Nonlinear Trading Rules Profitable In The Chinese Stock Market?”. Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., 5(01): 1-20. https://doi.org/10.1142/S201049520950002X.
- Tong, H., (1978). “On a Threshold Model in Pattern Recognition and Signal Processing”. In: Chen, C., Ed., Pattern Recognition and Signal Processing, Sijhoff and Noordhoff, Amsterdam, 55(4): 575-586. https://www.researchgate.net/publication/246995827. 
                                                                                                                - Tong, H., (1983). Threshold Models in Non-Linear Time Series Analysis.  Springer: New York. https://link.springer.com/book/10.1007/978-1-4684-7888-4
- Tong, H. & Lim, K. S., (1980). “Threshold Autoregression, Limit Cycles and Cyclical Data”. Journal of the Royal Statistical Society. Series B (Methodological), 42(3): 245–292. http://www.jstor.org/stable/2985164. 
                                                                                                                - Tripathi, A., Harekrishna, P. D., Sanikumar, S., Parmar, S. & Upadhyaya, D., (2025). “Advanced Stock Market Prediction using Conv-LSTM with Genetic Algorithm Optimization and Market Sentiment Integration”. Grenze International Journal of Engineering & Technology (GIJET), 8(1): 5-24. https://doi.org/10.48550/arXiv.2505.05325. 
                                                                                                                - Wang, P., (2008). Financial Econometrics. Taylor & Francis. Routledge Press. https://doi.org/10.4324/9780203892879. 
                                                                                                                - Zakhidov, G., (2024). “Economic Indicators: Tools for Analyzing Market Trends and Predicting Future Performance”. International Multidisciplinary Journal of Universal Scientific Prospective, 2(3): 23-29. https://www.scirp.org/reference/referencespapers?referenceid=3897171. 
                                                                                                                - Zheng, H., Wu, J., Song, R., Guo, L. & Xu, Z., (2024). “Predicting Financial Enterprise Stocks and Economic Data Trends Using Machine Learning Time Series Analysis”. Applied and Computational Engineering, 87(1): 26-32. https://doi.org/10.54254/2755-2721/87/20241562. 
                                                                                                                - Zivot, E. & Andrews, D. W. K., (1992). “Further Evidence on the Great Crash the Oil-Price Shock and the Unit-Root Hypothesis”. Journal of Business and Economic Statistics, 10(3): 51:70. https://doi.org/10.2307/1391541.