Economic Analysis of Switching Mining Method from Surface to Underground for Building Stone (Case Study: Dehbid Stone Mine)

Document Type : Research Article

Authors

1 Associate Professor, Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran (Corresponding Author).

2 M.Sc. Graduate in Mining Engineering, Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.

10.22084/aes.2025.30819.3784

Abstract

The underground extraction of building stone, in addition to reducing the environmental issues associated with surface mining, makes mining more cost-effective. Therefore, this study focuses on the economic analysis of changing the mining method for building stone from surface quarry mining to underground room and pillar mining. For this purpose, using data from the Dehbid marble mine, an economic feasibility study of the method change was carried out by determining the investment and operational costs and the revenue generated in both extraction methods. The results indicate that, considering a discount rate of 25%, the net present value (NPV) of the underground mining method is higher than that of the surface mining method, with values of 101,000,000,000,000 Rial and 52,741,000,000,000 Rial, respectively. Furthermore, the internal rate of return (IRR) for underground mining is also higher than for surface mining, with rates of 57.158% and 43.92%, respectively. In both cases, the IRR exceeds the minimum required rate of return, which is 25%. Therefore, based on these indicators, underground mining is more economical in this mine. On the other hand, a comparison of the payback period shows that, for the quarry extraction method, the payback period in normal and circular modes is 4 and 6 years, respectively, whereas for the room and pillar mining method, the payback period is the same for both modes and equals 3 years. Thus, considering the time value of money, underground stone extraction using the room and pillar method in this mine can be more economical.

Keywords

Main Subjects


- خداپرست مشهدی، مهدی؛ و قزلباش، اعظم، (1395). «ارزیابی اقتصادی احداث نیروگاه برق‌آبی (تلمبه - ذخیره‌ای) در سدهای مخزنی کشور مطالعه موردی: سد و نیروگاه پیرتقی». فصلنامۀ مطالعات اقتصادی کاربردی ایران، 5(17): 224-199. https://doi: 10.22084/aes.2016.1414
- سلیمی­فر، مصطفی؛ مهدوی عادلی، محمدحسین؛ رجبی مشهدی، حبیب؛ و قزلباش, اعظم، (1392). «ارزیابی اقتصادی انرژی برق خورشیدی (فتوولتائیک) و برق فسیلی در یک واحد خانگی در شهرستان مشهد». فصلنامۀ مطالعات اقتصادی کاربردی ایران، 2(8): 136-115. https://dor/20.1001.1.23222530.1392.2.8.8.1
 
References
- Aksoy, C. O. & Onargan, T.U.R.G.A.Y., (2006). “Sizing room and pillar by numerical modeling for underground marble quarries in Turkey”. Journal of Mining Science, 42: 483-489.  https://doi.org/10.1007/s10913-006-0077-9
- Alcalde-Gonzalo, J., Prendes-Gero, M.B., Álvarez-Fernández, M.I., Álvarez-Vigil, A.E. & González-Nicieza, C., (2013). “Roof tensile failures in underground excavations”. International Journal of Rock Mechanics and Mining Sciences, 58: 141-148. https://doi.org/10.1016/j.ijrmms.2012.10.003
- Asr, E.T., Kakaie, R., Ataei, M. & Mohammadi, M.R.T., (2019). “A review of studies on sustainable development in mining life cycle”. Journal of Cleaner Production, 229: 213-231. https://doi.org/10.1016/j.jclepro.2019.05.029
- Benardos, A.G., Kaliampakos, D.C., Prousiotis, J.G., Mavrikos, A.A. & Skoparantzos, K.A., (2001). “Underground aggregate mining in Athens: a promising investment plan”. Tunnelling and underground space technology, 16(4): 323-329. https://doi.org/10.1016/S0886-7798(01)00059-1
- Biondi, G., Fiandaca, O., Aliberti, D. & Cascone, E., (2022). “Effect of the presence of a historical underground quarry on site seismic response”. In: Geotechnical Engineering for the Preservation of Monuments and Historic Sites III, CRC Press, 756-767. https://doi.org/10.1201/9781003308867-57
- Bonetto, S., Fornaro, M., Giuliani, A. & Lasagna, M., (2008). “Underground quarrying and water control: Some cases from Northern Italy”. Mine water and the Environment, 7-10. https://www.imwa.info/docs/imwa_2008/IMWA2008_132_Bonetto.pdf
- Bonetto, S.M.R., Vagnon, F., Umili, G., Vianello, D., Migliazza, M.R. & Ferrero, A.M., (2021). “The contribution of remotely sensed data to the stress state evaluation in underground marble quarries”. The Egyptian Journal of Remote Sensing and Space Science, 24(1): 1-13. https://doi.org/10.1016/j.ejrs.2020.12.008
- Borchiellinia, R., Cardub, M., Colellac, F., Labagnara, D., Martinettib, A., Patruccob, M., Sandrind, D. & Verdaa, V., (2013). “A prevention through design approach for the environmental S&H conditions and the ventilation system at an Italian underground quarry”. Chemical Engineering Transactions, 32: 181-186. https://doi.org/10.3303/CET1332031
- Bruno, G. & Cherubini, C., (2005). “Subsidence induced by the instability of weak rock underground quarries in Apulia”. Giornale di Geologia Applicata, 1: 33-39. https://www.aigaa.org/public/GGA.2005-01.0-04.0004.pdf
- Cardu, M., Dipietromaria, S. & Oreste, P., (2016). “Sub-level stoping in an underground limestone quarry: an analysis of the state of stress in an evolutionary scenario”. Archives of Mining Sciences, 61(1). https://doi.org/10.1515/amsc-2016-0015
- Careddu, N., Siotto, G. & Tuveri, A., (2010). “Evolution of a marble quarry: from open cast to underground exploitation”. In: Proceedings of Global Stone Congress, 2-5. https://doi.org/10.1515/amsc-2016-0015
- Carvalho, F.P., (2017). “Mining industry and sustainable development: time for change”. Food and Energy security, 6(2): 61-77. https://doi.org/10.1002/fes3.109
- Chan, H.K.K., Millis, S.W., Wallace, M.I. & Hung, K.C., (2017). “Hong Kong's hidden aggregate resource: the potential for underground quarrying”. In: Proceedings of the HKIE Geotechnical Division 37th Annual Seminar, 34-44. https://www.researchgate.net/publication/316952069
- Cote, P., Dérobert, X. & Abraham, O., (2005). “Typology of conditions for underground quarry pillars based on geophysical investigations”. In: Proceedings of the International Symposium of Post-Mining. Nancy, France. https://www.semanticscholar.org
- Crassoulis, G., Kapenis, A., Thoraval, A., Ferrero, M., Germann, K., Iabichino, G., Gardenato, M. & Dell’Antone, F., (1999). “Development of an integrated computer-aided design and planning methodology for underground marble quarries”. Conference of EUROTHEN'99, Second annual Workshop, Cagliari, 1-6. https://hal.science/ineris-00976277v1
- Cravero, M. & Iabichino, G., (1997). “Geomechanical study for the exploitation of an underground marble quarry”. International Journal of Rock Mechanics and Mining Sciences, 34(3-4): 58.e1-58.e14. https://doi.org/10.1016/S1365-1609(97)00047-6
- Devleeschouwer, X., Mullard, C. & Goemaere, E., (2006). “Management of abandoned slate and coticule underground quarries by means of GIS, Vielsalm, Belgium”. In: Proceedings of the 10th IAEG Congress, Nottingham, United Kingdom. https://media.geolsoc.org.uk/iaeg2006/PAPERS/IAEG_413. pdf
- Devos, A., Fronteau, G., Lejeune, O., Sosson, C., Chopin, E. & Barbin, V., (2010). “Influence of geomorphological constraints and exploitation techniques on stone quarry spatial organisation: Example of Lutetian underground quarries in Rheims, Laon and Soissons areas”. Engineering Geology, 115(3-4): 268-275. https://dx.doi.org/10.1016/j.enggeo.2010.05.004
- Dintwe, T.K., Seiki, T. & Noguchi, S., (2017). “Stability Evaluation of an Underground Quarry in Oya”. In: Proceedings of the 2nd Join Conference of Utsunomiya University and Universitas Padjadjaran, 145-150. https://api.semanticscholar.org/CorpusID:203629730
- Ejdemo, T. & Söderholm, P., (2011). “Mining investment and regional development: A scenario-based assessment for Northern Sweden”. Resources Policy, 36(1): 14-21. https://doi.org/10.1016/j.resourpol.2010.08.008
- Esterhuizen, G.S., Dolinar, D.R. & Ellenberger, J.L., (2011). “Pillar strength in underground stone mines in the United States”. International Journal of Rock Mechanics and Mining Sciences, 48(1): 42-50. https://doi.org/10.1016/j.ijrmms.2010.06.003
- Fargier, Y., Antoine, R., Dore, L., Lopes, S.P. & Fauchard, C., (2017). “3D assessment of an underground mine pillar by combination of photogrammetric and geoelectric methods”. Geophysics, 82(4): E143-E153. https://doi.org/10.1190/geo2016-0274.1
- Ferrero, A.M., Migliazza, M., Segalini, A. & Gullì, D., (2013). “In situ stress measurements interpretations in large underground marble quarry by 3D modeling”. International Journal of Rock Mechanics and Mining Sciences, 60: 103-113. https://doi.org/10.1016/j.ijrmms.2012.12.008
- Ferrero, A., Migliazza, M., Segalini, A. & Giani, G.P., (2009). “In situ fracturing mechanics stress measurements to improve underground quarry stability analyses”. In: Proceedings of the 3rd CANUS Rock Mechanics Symposium, 1-8. https://geogroup.utoronto.ca/wp-content/uploads/RockEng09/PDF/Session7/3964%20PAPER.pdf
- Ferrero, A.M., Segalini, A. & Giani, G.P., (2010). “Stability analysis of historic underground quarries”. Computers and Geotechnics, 37(4): 476-486. https://doi.org/10.1016/j.compgeo.2010.01.007
- Fornaro, M. & Lovera, E., (2004). “Geological-technical and geo-engineering aspects of dimensional stone underground quarrying”. Engineering Geology for Infrastructure Planning in Europe: A European Perspective, 574-584. https://doi.org/10.1007/978-3-540-39918-6_64
- Fugiel, A., Burchart-Korol, D., Czaplicka-Kolarz, K. & Smoliński, A., (2017). “Environmental impact and damage categories caused by air pollution emissions from mining and quarrying sectors of European countries”. Journal of cleaner production, 143: 159-168. https://doi.org/10.1016/j.jclepro.2016.12.136
- Gaied, M.E., Gallala, W. & Younès, A., (2015). “Geoarchaeology of Roman Underground Quarries at Ksour Essaf (Tunisia)”. Geoheritage, 7(4): 375-382. https://doi.org/10.1007/s12371-014-0138-4
- Ghorbani, Y., Nwaila, G.T., Zhang, S.E., Bourdeau, J.E., Cánovas, M., Arzua, J. & Nikadat, N., (2023). “Moving towards deep underground mineral resources: Drivers, challenges and potential solutions”. Resources Policy, 80: 103222. https://doi.org/10.1016/j.resourpol.2022.103222
- Grosso, B., Dentoni, V. & Bortolussi, A., (2021). “Effect of the rock stress on the water jet cutting performance”. Rock Mechanics and Rock Engineering, 54(9): 4987-4999. https://doi.org/10.1007/s00603-021-02508-w
- Hammond, A.A., (1988). “Mining and quarrying wastes: a critical review”. Engineering geology, 25(1): 17-31. https://doi.org/10.1016/0013-7952(88)90016-6
- Hartman, H.L. & Mutmansky, J.M., (2002). Introductory mining engineering. John Wiley & Sons. https://www.wiley.com/en-us/Introductory+Mining+Engineering%2C+2nd+Edition-p-9780471348511
- He Mc, J.I.A.X.N., Coli, M., Livi, E. & Sousa, L., (2012). “Experimental study of rockbursts in underground quarrying of Carrara marble”. International Journal of Rock Mechanics and Mining Sciences, 52: 1-8. https://doi.org/10.1016/j.ijrmms.2012.02.006
- Hustrulid, W.A., Hustrulid, W.A. & Bullock, R.L. eds., (2001). Underground mining methods: Engineering fundamentals and international case studies. SME.
- Iannacchione, A.T., (1999). “Pillar design issues for underground stone mines”. In: Proceedings of the 18th International Conference on Ground Control in Mining, Morgantown, WV: West Virginia University, 271-281. https://www.onemine.org/documents/pillar-design-issues-for-underground-stone-mines
- khodaparast mashhadi, M. & Ghezelbash, A. (2016). “Economic assessment of the construction of hydroelectric power plant (pumped-storage) in Iranian reservoir dams: case study of Pirtaghi damandpower plant”. Journal of Applied Economics Studies in Iran, 5(17): 199-224. https://doi: 10.22084/aes.2016.1414, (In Persian)
- Kortnik, J., (2009). “Underground natural stone excavation technics in Slovenia”. RMZ–Materials and Geoenvironment, 56(2). https://www.dlib.si/details/URN:NBN:SI:doc-BNKQYUVE
- Kortnik, J., (2012). “High safety pillars design for underground excavation of natural stone blocks”. Journal of. Civil Engineering and Construction Technology, 3(6): 179-188. https://doi.org/10.5897/JCECT12.054
- Kortnik, J., (2015). “Stability assessment of the high safety pillars in Slovenian natural stone mines”. Archives of Mining Sciences, 60(1): 403-417. https://doi.org/10.1515/amsc-2015-0027
- Kumar, R., Choudhury, D. & Bhargava, K., (2016). “Simulation of rock subjected to underground blast using FLAC3D”. Japanese Geotechnical Society Special Publication, 2(12): 508-511. https://doi.org/10.3208/jgssp.IND-27
- Kun, M.E.T.E., (2014). “Evaluation and applications of empirical approaches and numerical modeling of an underground limestone quarry with room and pillar design”. Journal of Mining Science, 50: 126-136. https://doi.org/10.1134/S1062739114010189
- Langer, W.H., (2001). “Potential environmental impacts of quarrying stone in karst: a literature review”. U.S. Geological Survey open-file report, 01-0484. URL: https://pubsdata.usgs.gov/pubs/of/2001/ofr-01-0484/
- Marchetti, D., Avanzi, G.D.A., Sciarra, N., Calista, M. & Piaggi, L., (2012). “Pillar sizing and stability analysis by numerical modeling for underground stone quarrying”. In: Proceedings of the ISRM International Symposium-EUROCK, 1-13. https://onepetro.org/ISRMEUROCK/proceedings-abstract/EUROCK12/EUROCK12/ISRM-EUROCK-2012-080/39944
- Marras, G. & Careddu, N., (2018). “Overview: Health and Safety in the Italian dimension stone quarrying industry”. Transportation, 2: 0-8. https:// doi.org/10.19199/2021.1.1121-9041.034
- Martins, R., Lopes, L. & Branco, E., (2017). “Underground Marble Exploitation-A Portuguese Case Study and Technical Aspects”. In: Proceedings of the IV International Stone Congress, Izmir - Turkey, 65-683. http://hdl.handle.net/10174/22593
- Millar, D.L., Brown, T.J., Kruyswijk, J.B., Smith, N., Coggan, J.S., Foster, P.J., Steadman, E.J., Evans, D.J. & Hewitt, J., (2012). “Assessing the feasibility of underground mining of aggregates in southern and eastern England”. In: Proceedings of the 16th Extractive Industry Geology Conference, Extractive Industry Geology Conference, 54-70. https://nora.nerc.ac.uk/id/eprint/19945/1/Printers_proof_6._Millar_54-70.pdf
- Mohammadi, J., Ataei, M., Kakaei, R.K., Mikaeil, R. & Haghshenas, S.S., (2018). “Prediction of the production rate of chain saw machine using the multilayer perceptron (MLP) neural network”. Civil Engineering Journal, 4(7): 1575-1583. https://doi.org/10.28991/cej-0309196
- Nilsson, D.S., (1982). “Advantages of high production level in underground mining”. Mining Engineering, 34(8). https://eurekamag.com/research/091/158/091158909.php?srsltid=AfmBOoqOzBNuKMC1Pxerg3WwKnbFSWGzmPbYBSFjhoNtxNQpC6679sx4
- Oggeri, C. & Oreste, P., (2015). “Underground Quarrying for Marble: Stability assessment through modelling and monitoring”. International Journal of Mining Science (IJMS), 1(1): 35-42. https://www.marcocosistones.com/sites/default/files/Underground%20Marble%20Mining-Stability%20Assessment.pdf
- Oggeri, C., Oreste, P., Valentino, D. & Fornaro, M., (2001). “Going underground in quarrying: Technical perspectives for marble in Portugal”. In: Proceedings of the 17th International Mining Congress and Exhibition of Turkey-IMCET, Ankara, 19-22.
- Pelizza, S., Oreste, P.P., Peila, D. & Oggeri, C., (2000). “Stability analysis of a large cavern in Italy for quarrying exploitation of a pink marble”. Tunnelling and underground space technology, 15(4): 421-435. https://doi.org/10.1016/S0886-7798(01)00011-6
- Rybár, P., Hronček, P., Tometzová, D., Domaracká, L. & Jesenský, M., (2017). “Underground quarries their possible use for mining tourism purposes–Slovak perspectives on the example of the underground stone quarry of Veľká Stráň”. Acta Geoturistica, 8(2): 87-107. https://doi.org/10.1515/AGTA-2017-0009
- Sahu, H.B., Prakash, N. & Jayanthu, S., (2015). “Underground mining for meeting environmental concerns–a strategic approach for sustainable mining in future”. Procedia Earth and Planetary Science, 11: 232-241. https://doi.org/10.1016/j.proeps.2015.06.030
- Salimifar, M., mahdavi adeli, M. H., rajabi mashhadi, H. & ghezelbash, A. (2014). “Economic Evaluation of Solar Power and Fossil Energy in a House in Mashhad”. Journal of Applied Economics Studies in Iran, 2(8): 115-136. https://dor/20.1001.1.23222530.1392.2.8.8.1 (In Persian)
- Seiki, T., Takahashi, K., Dintwe, T.K.M., Noguchi, S., Ohmura, T. & Aydan, Ö., (2019). “Consideration of structural stability for Oya underground quarry with dynamic response”. In: ISRM Rock Dynamics Summit, Paper Number: ISRM-RDS-2019-051. https://onepetro.org/isrmrds/proceedings-abstract/RDS19/All-RDS19/475845
- Silvertant, J., (2008). “The underground Limestone Quarries in the Low Countries and their Place in European Mining History”. In: Proceeding of the 3rd International Symposium on Archaeological Mining History-Low Countries. https://www.academia.edu/35775931/The_underground_Limestone_Quarries_in_the_Low_Countries_and_their_Place_in_European_Mining_History
- Tan, F., Jiao, Y.Y., Wang, H., Liu, Y., Tian, H.N. & Cheng, Y., (2019). “Reclamation and reuse of abandoned quarry: A case study of Ice World & Water Park in Changsha”. Tunnelling and Underground Space Technology, 85: 259-267. https://doi.org/10.1016/j.tust.2018.12.009
- Van Den Eeckhaut, M., Poesen, J., Dusar, M., Martens, V. & Duchateau, P., (2007). “Sinkhole formation above underground limestone quarries: A case study in South Limburg (Belgium)”. Geomorphology, 91(1-2): 19-37. https://doi.org/10.1016/j.geomorph.2007.01.016
- Vaughn, K.J. & Tripcevich, N., (2012). “An introduction to mining and quarrying in the ancient Andes: sociopolitical, economic and symbolic dimensions”. In: Mining and Quarrying in the Ancient Andes: Sociopolitical, Economic, and Symbolic Dimensions, 3-19. https://escholarship.org/content/qt07v635t0/qt07v635t0.pdf
- Wysokiński, M., Baran, J., Gołasa, P. & Lenort, R., (2014). “Economic and Energy Efficiency of the Mining and Quarrying Sector in European Countries”. In: Metal 2014: 23th International Conference on Metallurgy and Materials, 1965-1971. RIV/61989100:27360/14:86093217 - isvavai.cz
- Yang, H.S., Kim, W.B. & Ali, M.A., (2012). “Performance of pillar design in underground stone mines that include discontinuities”. Geosystem Engineering, 15(3): 187-194. https://doi.org/10.1080/12269328.2012.704160
- Yanovskaya, E. & Garshin, D., (2015), March. “Underground history of Domodedovo district”. In: Proceedings of International Congress of Speleology in Artificial Cavities, Rome, 85-96. https://www.academia.edu/19081758/UNDERGROUND_HISTORY_OF_DOMODEDOVO_DISTRICT