The Impact of Population Growth on Economic Growth with the Assumption of Simultaneous Endogeneity of Population and Technology

Document Type : Research Article

Author

Assistant Professor, Department of Energy Engineering, University of Larestan, Larestan, Iran.

Abstract

Demographic discussions as well as studies in the field of economic growth are among the oldest economic topics. Despite a wide range of theoretical and empirical research, economists and demographers have not yet reached a single point of view on the relationship between economic growth and population. Countries with rapidly growing populations tend to have low economic growth rates. This negative relationship is usually not shown in different studies. What social welfare theory can argue that the population of Iran is under or overhead of optimal value? In literature, most studies focus specifically on exogenous population changes. Endogenous population changes in an endogenous growth model have been hypothesized only in restricted studies. The production function in the Ramsey model is generally a function of capital, labor and technology (knowledge level). In the developed model, the population is assumed to be endogenous in the Ramsey model. Also we assumed the technology level is a function of the population as a sigmoid function. So in this study, technology is endogenous. The dynamic problem is solved (Bellman function formed and optimal solution of this objective function was found) and optimal population growth rate is calculated in extended Ramsey growth model with simultaneous endogenous population growth rate and technology level. The optimal population growth rate for the Iranian economy is 2%. However, according to the Iran Statistics Center, the population growth rate was 1.1 percent in 2018. A lower population size than optimal can have negative effects on social welfare in the long run. Therefore, the government should implement appropriate population policies to achieve the optimal population growth rate of 2%.

Keywords

Main Subjects


-  استادزاد، علی‌حسین؛ و بهپور، سجاد، (1393). «رویکردی نوین در محاسبه سری زمانی سرمایه در ایران: روش الگوریتم بازگشتی با استفاده از الگوریتم ژنتیک (۱۳۳۸-۱۳۸۹)». تحقیقات مدلسازی اقتصادی، ۵ (۱۸): ۱۴۱-۱۷۸. DOR: 20.1001.1.22286454.1393.5.18.2.8
- اسلاملوئیان، کریم؛ و استادزاد، علی‌حسین، (1395). «برآورد تابع تولید مناسب برای ایران با وجود نهاده انرژی و تحقیق و توسعه: روش الگوریتم ژنتیک». پژوهش‌های اقتصادی (رشد و توسعه پایدار)، ۱۶ (۱) :۲۱-۴۸. DOR: 20.1001.1.17356768.1395.16.1.1.4
- عبدلی، قهرمان. (1388). «تخمین نرخ تنزیل اجتماعی برای ایران». پژوهشنامۀ اقتصادی، 9(34): 135-156. https://joer.atu.ac.ir/article_2889.html?lang=fa
- روشن، رضا، (2019). «جداسازی و محاسبه ریسک‌گریزی نسبی و کشش جانشینی بین دوره‌ای (رویکرد ترجیحات بازگشتی و برنامه‌ریزی پویا)». مدلسازی اقتصادی، 13(45): 159-182. https://eco.firuzkuh.iau.ir/article_666200.html
 
 
- Abdoli, G., (2009). “Estimation of Social Discount Rate for Iran”. Economics Research, 9(34): 135-156. https://joer.atu.ac.ir/article_2889.html?lang=en (In Persian).
- Anufriev, M.; Radi, D. & Tramontana, F., (2018). “Some reflections on past and future of nonlinear dynamics in economics and finance”. Decisions in Economics and Finance, 41: 91-118. DOI: https://doi.org/10.1007/s10203-018-0229-9
- Anzoategui, D. et al.,  (2019). “Endogenous technology adoption and R&D as sources of business cycle persistence”. American Economic Journal: Macroeconomics 11(3): 67-110. DOI: https://doi.org/10.1257/mac.20170269
- Barro, R. J. & Becker, G. S., (1989). “Fertility choice in a model of economic growth”. Econometrica: journal of the Econometric Society, 57(2): 481-501. DOI: https://doi.org/10.2307/1912563
- Bloom, D. E. et al.,  (2010). “Implications of population ageing for economic growth”. Oxford Review of Economic Policy, 26(4): 583-612. DOI: https://doi.org/10.1093/oxrep/grq038
- Bloom, D. E. et al.,  (2010). “Population aging and economic growth”. Globalization and Growth, 297.
- Bloom, D. E. et al.,  (2011). “Population aging: facts, challenges, and responses”. Benefits and compensation International, 41(1): 22. https://core.ac.uk/download/pdf/6494803.pdf
- Bloom, D. et al.,  (2008). Population Aging and Economic Growth. The World Bank.
- Boucekkine, R. et al.,  (2013). “Spatial dynamics and convergence: The spatial AK model”. Journal of Economic Theory, 148(6): 2719-2736. DOI: https://doi.org/10.1016/j.jet.2013.09.013
- Boucekkine, R. et al.,  (2014). “Egalitarianism under population change: age structure does matter”. Journal of Mathematical Economics, 55: 86-100. DOI: https://doi.org/10.1016/j.jmateco.2014.10.007
- Boucekkine, R.; Fabbri, G.; Federico, S. & Gozzi, F., (2017). “Growth and Agglomeration in the Heterogeneous Space: A Generalized AK Approach”. halshs-01399995v2. https://shs.hal.science/halshs-01399995v2
- Coccia, M., (2014). “Driving forces of technological change: the relation between population growth and technological innovation: analysis of the optimal interaction across countries”. Technological Forecasting and Social Change, 82: 52-65. DOI: https://doi.org/10.1016/j.techfore.2013.06.001
- Dasgupta, P., (2005). “Regarding Optimum Population”. Journal of Political Philosophy, 13(4): 414-442. https://www.econ.cam.ac.uk/people-files/emeritus/pd10000/publications/07/RegOptPop.pdf
- Dupuy, A., (2006). “Hicks neutral technical change revisited: CES production function and information of general order”. Topics in macroeconomics, 6(2). DOI: https://doi.org/10.2202/1534-5998.1339
- Eslamloueyan, K. & Ostadzad, A. H., (2016). “Estimating a Production Function for Iran with Emphasis on Energy and Expenditure on Research and Development: An Application of Genetic Algorithm Method”. QJER, 16 (1): 21-48. DOR: 20.1001.1.17356768.1395.16.1.1.4 (In Persian).
- Ferrara, M. & Guerrini, L., (2009). “The Ramsey model with logistic population growth and Benthamite felicity function”. WSEAS International Conference, Proceedings. Recent Advances in Computer Engineering, WSEAS.
- Greaves, H., (2019). "Climate change and optimum population". The Monist, 102(1): 42-65. DOI: https://doi.org/10.1093/monist/ony021
- Hughes, J. et al., (2005). “Review of the radiation exposure of the UK population”. Journal of Radiological Protection, 25(4): p. 493. DOI: https://doi.org/10.1088/0952-4746/25/4/010
- Jiao, J. et al.,  (2017). “Maximum likelihood estimation of functionals of discrete distributions”. IEEE Transactions on Information Theory, 63(10): 6774-6798. DOI: https://doi.org/10.1109/TIT.2017.2733537
- Kelley, A. C., (1988). “Economic consequences of population change in the Third World”. Journal of Economic Literature, 26(4): 1685-1728. https://www.jstor.org/stable/2726858
- Klump, R. et al.,  (2007). “Factor substitution and factor-augmenting technical progress in the United States: a normalized supply-side system approach”. The Review of Economics and Statistics, 89(1): 183-192. DOI: https://doi.org/10.1162/rest.89.1.183
- León-Ledesma, M. A. & Satchi, M., (2019). “Appropriate technology and balanced growth". The Review of Economic Studies, 86(2): 807-835. DOI: https://doi.org/10.1093/restud/rdy002
- Lianos, T. P. & Pseiridis A., (2016). "Sustainable welfare and optimum population size". Environment, development and sustainability, 18(6): 1679-1699. DOI: https://doi.org/10.1007/s10668-015-9711-5
- Lianos, T. P., (2018). “Steady state economy at optimal population size". The journal of population and sustainability, 3(1), 75-99. DOI: https://doi.org/10.3197/jps.2018.3.1.75
- Nerlove, M. et al.,  (1984). “Bequests and the size of population when population is endogenous”. Journal of Political Economy, 92 (3): 527-531. DOI: https://doi.org/10.1086/261240
- Nerlove, M. et al.,  (1985). “Population size: individual choice and social optima”. The Quarterly Journal of Economics, 100(2): 321-334. DOI: https://doi.org/10.2307/1885384
- Nerlove, M. et al., (2014). Household and economy: Welfare economics of endogenous fertility, Academic Press.
- Ostadzad, A. H. & Behpour, S., (2014). “A New Approach to Calculate the Time Series of Capital Stock for Iranian Economy: The Recursive Algorithm Method Using Genetic Algorithms (1959-2011). Jemr, 5 (18): 141-178. DOR: 20.1001.1.22286454.1393.5.18.2.8 (In Persian).
- Palivos, T. & Yip, C. K., (1993). “Optimal population size and endogenous growth”. Economics Letters, 41(1): 107-110. DOI: https://doi.org/10.1016/0165-1765(93)90120-2
- Prettner, K., (2013). “Population aging and endogenous economic growth”. J Popul Econ, 26(2): 811-834. DOI: https://doi.org/10.1007/s00148-012-0441-9
- Razin, A. & Sadka, E., (1995). Population economics. Mit Press.
- Roshan, R., (2019). “Separation and Computation of Relative Risk Aversion and Elasticity of Inter Temporal Substitution: Recursive Preferences and Dynamic Programming Approach”. Economic Modeling, 13(45): 159-182. https://eco.firuzkuh.iau.ir/article_666200.html?lang=en (In Persian).
- Ruelle, D., (2018). Can nonlinear dynamics help economists? The economy as an evolving complex system. CRC Press: 194-204.
- Simon, J. L., (2019). The economics of population growth. Princeton university press.
- Stroud, J. R. et al., (2017). “Bayesian and maximum likelihood estimation for Gaussian processes on an incomplete lattice”. Journal of computational and Graphical Statistics, 26(1): 108-120. DOI: https://doi.org/10.1080/10618600.2016.1152970
- Vîlcu, A.-D. & Vîlcu, G.-E., (2017). “A survey on the geometry of production models in economics”. Arab Journal of Mathematical Sciences, 23(1): 18-31. DOI: https://doi.org/10.1016/j.ajmsc.2016.08.003