Investigating the Impact of Behavioral Factors on the Iranian Housing Price

Document Type : Research Article

Authors

1 PhD Candidate of economic sciences, Department of Economics, Faculty of Economic and Social Sciences, Bu-Ali Sina University, Hamadan, Iran.

2 Associate Professor, Department of Economics, Faculty of Economic and Social Sciences, Bu-Ali Sina University, Hamadan, Iran.

3 Professor, Department of Economics, Faculty of Economic and Social Sciences, Bu-Ali Sina University, Hamadan, Iran.

Abstract

The hyper volatilities of the housing market and the reasons for the emergence of boom-and-bust cycles cannot be explained by traditional theories. Recent studies indicate that behavioral factors are responsible for market volatility in the financial and real estate sectors, making it impossible to comprehend housing market events if they are neglected. According to this new viewpoint, the main objective of this study is to investigate the influence of two major behavioral principles, namely herd behavior and overoptimism, on the Iranian housing market. The seasonal data of Iran’s housing market from 2004:4 to 2021:5 and the bounds testing approach to cointegration of Pesran et al. (2001) based on the ARDL model have been utilized in this research. Since herd behavior is a hidden unobservable variable, Hwang & Salmon’s (2004) method was employed to quantify it. The quantification of herd behavior in the housing market demonstrates observable changes over time, confirming the methodology employed to quantify it in this study. The results of the cointegration test demonstrate that the correct variables influencing house prices were chosen and that there is a cointegration relationship between the research variables. Also, the results of this study reveal that behavioral components are among the most important determinants of housing prices, and that both herd behavior and overoptimism have a positive and statistically significant effect on housing prices. In addition to behavioral considerations, the results of this study indicate that economic factors such as real volume of liquidity, real GDP, and informal market exchange rate also influence housing prices, with all three variables having a positive effect on real housing prices.

Keywords

Main Subjects


- حیدری، ح.؛ جوهری‌سلماسی، پ.؛ راسخی، س.؛ و فعالجو، ح.، (1398). «آزمون فرضیۀ ناهمگنی عاملین بازار با استفاده از مدل STAR با تابع انتقال چند متغیره (مطالعه موردی بورس اوراق بهادار تهران)». دانش مالی تحلیل اوراق بهادار (مطالعات مالی)، 12(41 ): 83-99.
- سپهردوست، حمید، (1389). «بررسی مقایسه‌‏ای عملکرد تولید مسکن در کشور». مدیریت تولید و عملیات، 1(1): 103-118.
- قاسمی، محمدرضا؛ جعفری، الناز؛ و اربابیان، شیرین، (1392). «اندازه‌گیری حباب قیمت مسکن در ایران و تأثیر سیاست‌های پولی بر آن». پژوهش‌های پولی-بانکی، 18(6): 1-21.
- قلی‌زاده، علی‌اکبر؛ و کمیاب، بهناز، (1389). «بررسی اثر سیاست پولی بر حباب قیمت مسکن: مطالعه بین کشوری». تحقیقات اقتصادی، 45(3): 207-238. (doi:20.1001.1.00398969.1389.45.3.9.4).
- قلی‌زاده، علی‌اکبر؛ کمیاب، بهناز، (1389). «ارتباط بلند مدت بازار مسکن و تورم در ایران». مطالعات و سیاست‌های اقتصادی، 18: 68-51. (doi: 10.22096/esp.2010.26221).
- قلی‌زاده، علی‌اکبر؛ و طهوری‌متین، مسعود، (1390). «انتخاب سبد دارایی‌ها در دوره رکود و رونق مسکن». پژوهش‌های اقتصادی (رشد و توسعه پایدار)،11 (3): 92-71.
- قلی‌زاده، علی‌اکبر؛ عسگری، مهدی؛ و جعفری‌سرشت، داود، (1398). «نابرابری درآمد و استطاعت خرید مسکن در کلان‌شهرهای ایران با رویکرد شبه‌پنل». پژوهش‌ها و سیاست‌های اقتصادی. 27 (۹۰): 136-103.
 
- Abildgren, K.; Hansen, N. L. & Kuchler, A., (2018). “Overoptimism and house price bubbles”. Journal of Macroeconomics, 56: 1-14. doi:https://doi.org/10.1016/j.jmacro.2017.12.006
- Andersson, M.; Hedesstrom, M. & Garling, T., (2014). “A social-psychological perspective on herding in stock markets”. Journal of Behavioral Finance, 15(3): 226-234. doi: https://doi.org/10.1080/15427560.2014.941062
- Baddeley, M., (2010). “Herding, social influence and economic decision-making: socio-psychological and neuroscientific analyses”. Philosophical Transactions of the Royal Society B: Biological Sciences365(1538): 281-290. doi: https://doi.org/10.1098/rstb.2009.0169
- Bahmani-Oskooee, M. & Wu, T. P., (2018). “Housing prices and real effective exchange rates in 18 OECD countries: a bootstrap multivariate panel Granger causality”. Economic Analysis and Policy, 60: 119-126. doi: https://doi.org/10.1016/j.eap.2018.09.005
- Case, B.; Goetzmann, W. N. & Rouwenhorst, G. K., (2000). “Global real estate markets: Cycles and fundamentals”. Working, Paper No. 7566, International Center of Finance. doi: http://dx.doi.org/10.3386/w7566
- De Stefani, A., (2021). “House price history, biased expectations, and credit cycles: The role of housing investors:. Real Estate Economics49(4): 1238-1266. doi: https://doi.org/10.1111/1540-6229.12328
- Del Negro, M., & Otrok, C. (2007). 99 Luftballons: Monetary policy and the house price boom across US states. Journal of Monetary Economics54(7), 1962-1985. doi: https://doi.org/10.1016/j.jmoneco.2006.11.003
- Demary, Markus, The Link Between Output, Inflation, Monetary Policy and Housing Price Dynamics, MPRA Paper No. 15978, posted 30. June 2009.
- Descak, I., (2017). The role of behavioral economics in the real estate market: Example of Croatia.
- Dong, F.; Miao, J. & Wang, P., (2020). “Asset bubbles and monetary policy”. Review of Economic Dynamics, 37: S68-S98. doi: http://dx.doi.org/10.1016/j.red.2020.06.003
- Fama, E. F., (1970). “Efficient capital markets: A review of theory and empirical work”. The journal of Finance25(2): 383-417. doi: https://doi.org/10.2307/2325486
- Ferson, W. E. & Korajczyk, R. A., (1995). “Do Arbitrage Pricing Models Explain the Predictability of Stock Returns?”. The Journal of Business, 68(3): 309–349.
- Ferson, W. E. & Harvey, C. R., (1991). “The variation of economic risk premiums”. Journal of Political Economy, 99: 285 – 315. doi: 10.1086/261755
- Ferson, W. E. & Harvey, C. R., (1993). “The risk and predictability of international equity returns”. Review of Financial Studies, 6: 527– 566. doi: https://doi.org/10.1093/rfs/6.3.527
- Franičević, V., (1995). “Some Problems with the Rational Economic Man”. Revija za sociologiju, 26 (3-4): 151-168. https://hrcak.srce.hr/154569.
- Galí, J. & Gambetti, L., (2015). “The effects of monetary policy on stock market bubbles: Some evidence”. American Economic Journal: Macroeconomics7(1): 233-57. doi: 10.1257/mac.20140003
- Ghasemi, M.; Arbabian, Sh. & Jafari, E., (2014). “Measuring the House Price Bubble in Iran and the Effect of Monetary Policy on it”. Journal of Monetary and Banking Reaserch,18(6): 1-21. (In Persian).
- Gholi Zadeh, A. A.; Asgari M. & Jafari Seresht, D., (2019). “Income Inequality and Housing Affordability in Selected Metropolises of Iran: A Pseudo-Panel Approach”. Journal of Economic Research and Policies, 27 (90): 103-136. (In Persian).
- Gholizadeh, A. A. & Kamyab, B., (2010). “A Long-Term Analysis of Housing Markets and Inflation in Iran”. The Journal of Economic Studies and Policies, 18: 51-68. doi: 10.22096/esp.2010.26221. (In Persion)
- Gholizadeh, A. A. & Kamyab, B., (2010). “The Analysis of Effect of The Monetary Policy on House Price Bubble: A Cross-Country Study”. Journal of Economic Research (Tahghighat- E- Eghtesadi)45(3). doi: 20.1001.1.00398969.1389.45.3.9.4 (In Persion)
- Glaeser, E. L.; Gyourko, J. & Saiz, A., (2008). “Housing supply and housing bubbles”. Journal of urban Economics64(2): 198-217. doi: https://doi.org/10.1016/j.jue.2008.07.007
- Glavatskiy, K. S.; Prokopenko, M.; Carro, A.; Ormerod, P. & Harre, M., (2021). “Explaining herding and volatility in the cyclical price dynamics of urban housing markets using a large-scale agent-based model”. SN Business & Economics, 1(6): 1-21. doi: https://doi.org/10.1007/s43546-021-00077-2
- Griffin, M. A.; Neal, A. & Parker, S. K., (2007). “A new model of work role performance: Positive behavior in uncertain and interdependent contexts”. Academy of management journal50(2): 327-347.doi: https://doi.org/10.5465/amj.2007.24634438
- Harris, R. & Sollis, R., (2003). Applied time series modelling and forecasting. Wiley.
- Harvey, C. R., (1989). Time-varying conditional covariances in tests of asset pricing models. Journal of Financial Economics, 24: 289– 317. doi: https://doi.org/10.1016/0304-405X(89)90049-4
- He, Y. & Xia, F., (2020). “Heterogeneous traders, house prices and healthy urban housing market: A DSGE model based on behavioral economics”. Habitat International96: 102085.doi: https://doi.org/10.1016/j.habitatint.2019.102085
- Heidari, H.; Johari Salmasi, P.; Rasekhi, S. & Faaljoo, H., (2019). “Hypothesis testing of Heterogeneous agents using STAR model with multivariate transition function: A case study of Tehran Stock market”. Financial Knowledge of Securities Analysis12(41): 83-99. (In Persian)
- Hirshleifer, D., (2015). “Behavioral finance”. Annual Review of Financial Economics, 7(1): 133-159. doi: https://doi.org/10.1146/annurev-financial-092214-043752
- Hwang, S. & Salmon, M., (2004). “Market stress and herding”. Journal of Empirical Finance11(4): 585-616. doi: https://doi.org/10.1016/j.jempfin.2004.04.003
- Jalil, A. & Ma, Y., (2008). “Financial development and economic growth: time series evidence from Pakistan and China”. Journal of economic cooperation, 29(2): 29-68.
- Kallinterakis, V.; Munir, N. & Radovic-Markovic, M., (2010). “Herd behaviour, illiquidity and extreme market states: Evidence from Banja Luka”. Journal of Emerging Market Finance9(3): 305-324. doi: https://doi.org/10.1177/097265271000900303
- Kapor, P., (2014). “Bihevioralne finansije”. Megatrend revija, 11(2): 73–94.
- Khiabani, N., (2015). “Oil inflows and housing market fluctuations in an oil-exporting country: Evidence from Iran”. Journal of Housing Economics30: 59-76. doi: https://doi.org/10.1016/j.jhe.2015.10.002
- Lam, C. H. L. & Hui, E. C. M., (2018). “How does investor sentiment predict the future real estate returns of residential property in Hong Kong?”. Habitat International75: 1-11. doi: https://doi.org/10.1016/j.habitatint.2018.02.009
- Lan, T., (2014). “Herding behavior in China housing market”. International Journal of Economics and Finance6(2): 115-124. doi: http://dx.doi.org/10.5539/ijef.v6n2p115
- Malmendier, U. & Taylor, T., (2015). “On the verges of overconfidence”. Journal of Economic Perspectives29(4): 3-8. doi: 10.1257/jep.29.4.3
- Marfatia, H. A.; Gupta, R. & Cakan, E., (2017). “The international REIT’s time-varying response to the US monetary policy and macroeconomic surprises”. The North American Journal of Economics and Finance42: 640-653. doi: https://doi.org/10.1016/j.najef.2017.09.007
- Mayer, C. (2011). Housing bubbles: A survey. Annu. Rev. Econ.3(1), 559-577. doi: https://doi.org/10.1146/annurev.economics.012809.103822
- Mayer, C. & Sinai, T., (2009). US House Price Dynamics and Behavioral Finance. Policy Making Insights from Behavioral Economics. Federal Reserve Bank of Boston, Boston.
- Miao, J.; Shen, Z. & Wang, P., (2019). “Monetary policy and rational asset price bubbles: Comment”. American Economic Review109(5): 1969-90. doi: 10.1257/aer.20180145
- Mullainathan, S. & Thaler, R. H., (2000). “Behavioral economics”. NBER Working Paper, No. 7948.
- Njenga, E. N. & Kagiri, A., (2018). Effect of Behavioral Bias on Real Estate Prices In Kenya (A Case Of Real Estates In Kiambu County).
- Pesaran, M. H.; Shin, Y. & Smith, R. J., (2001). “Bounds testing approaches to the analysis of level relationships”. Journal of applied econometrics16(3): 289-326. doi: https://doi.org/10.1002/jae.616
- Phung, A., (2010), Behavioral Finance.
- Qolizadeh, A. & Tahuri Matin, M., (2011). “Portfolio Selection with Housing Market Boom and Bust”. The Economic Research (Sustainable Growth and DevelopmenI 11 (3): 71-92. (In Persian)
- Ruoxi, Q., (2019). “Behavior Analysis of Real Estate Investors”. Mfssr: 308-312. doi: 10.25236/mfssr.2019.065
- Schinckus, C., (2011). “Archeology of Behavioral Finance”. IUP Journal of Behavioral Finance8(2).
- Sepehrdoust, H., (2010). “Comparative Study of the Housing Industry Performance in country”‎. Research in Production and Operations Management1(1): 103-118. (In Persian)
- Shefrin, H. & Statman, M., (2000). “Behavioral portfolio theory”. Journal of financial and quantitative analysis35(2): 127-151. doi: https://doi.org/10.2307/2676187
- Shiller, R. J., (2015). “Irrational exuberance”. In: Irrational exuberance. Princeton university press. doi: https://doi.org/10.1515/9781400865536
- Sinha, P. C., (2015). “Stocks’ pricing dynamics and behavioral finance: A review”. Management Science Letters, 5(9): 797-820. doi: 10.5267/j.msl.2015.7.003
- Spyrou, S., (2013). “Herding in financial markets: a review of the literature”. Review of Behavioral Finance. doi: https://doi.org/10.1108/RBF-02-2013-0009
- Tan, C., (2021). “A study of boundedly rational behaviour in housing choice: evidence from Malaysia”. International Journal of Housing Markets and Analysis. doi: doi.org/10.1108/IJHMA-08-2021-0094
- Taylor, J. B., (2009). The financial crisis and the policy responses: An empirical analysis of what went wrong (No. w14631). National Bureau of Economic Research.
- Venezia, I.; Nashikkar, A. & Shapira, Z., (2011). “Firm specific and macro herding by professional and amateur investors and their effects on market volatility”. Journal of Banking and Finance, 35(7): 1599-1609. doi: https://doi.org/10.1016/j.jbankfin.2010.11.015
- Yang, J.; Cashel-Cordo, P. & Kang, J. G., (2020). “Empirical research on herding effects: case of real estate markets”. Journal of Accounting and Finance, 20(1): 122-130.
- Zhang, Y.; Hua, X. & Zhao, L., (2012). “Exploring determinants of housing prices: A case study of Chinese experience in 1999–2010”. Economic modelling29(6): 2349-2361. doi: https://doi.org/10.1016/j.econmod.2012.06.025
- Zhou, Z. Y., (2018). “Housing market sentiment and intervention effectiveness: Evidence from China”.  Emerging Markets Review, 35: 91–110. doi: https://doi.org/10.1016/j.ememar.2017.12.005