- Abbassi, M.; Ashrafi, M. & Sharifi Tashnizi, E., (2014). “Selecting balanced portfolios of R&D projects with interdependencies: A Cross-Entropy based methodology”. Technovation, 34(1): 54-63. https://doi.org/10.1016/j.technovation.2013.09.001.
- Agasisti, T.; Catalano G.; Landoni, P. & Verganti, R., (2012). “Evaluating the performance of academic departments: an analysis of research-related output efficiency”. Research Evaluation, 21: 2–14, doi:10.1093/reseval/rvr001.
- Alizadeh, P. & Ghazinoori, S., (2015). “The foundations of measuring research and development costs with an emphasis on considerations and points of measurement in Iran”. National Research Institute for Scince Policy, Tehran, Iran.
- Alizadeh, P.; Fasihi, M. A.; Khormandania, S. & Shojaei, M. H., (2019). “A research plan to compile a framework for defining research and development credits in the annual budget of the whole country”. Report of Research Project, Institute of Technology Studies, Tehran, Iran.
- Alizadeh, P.; Ghazinoory, S.; Amiri, M. & Ghazinoori, S., (2018). “Designing a Policy Mix to Enhance the Business Expenditure on Research and Development (R&D) in Iran”. Journal of Improvement Management, 12 (3): 1-24. (In Persian).
- Alizadeh, P. & Manteghi, M., (2019). “Policies for Supporting R&D in the Business Sector”. Journal of Science and Technology Policy, 12(2): 363-378. (In Persian).
- Alizadeh, P., (1390). “Policies to promote research and development and innovation (2): research and technology organizations”. Majlis Research Center, Policy Report, serial number: 12207.
- Alizadeh, P., (2010). “Science and Technology Assessment (1): Science and Technology Assessment System in Iran”. Majlis Research Center, Policy Report, serial number: 10450.
- Azar, A. & Najafi, S., (2011). “Mathematical model of budgeting in the public sector: robust optimization approach”. Public Administration Perspective, 2(2): 83-98 (In Persian).
- Bai, Y.; Song, S.; Jiao, J. & Yang, R., (2019). “The impacts of government R&D subsidies on green innovation: Evidence from Chinese energy-intensive firms”. Journal of Cleaner Production, 233: 819-829.
- Barrio-García, S. D. A.; Kamakura, W. & Luque-Martínez, T., (2019). “A Longitudinal Cross-product Analysis of Media-budget Allocations: How Economic and Technological Disruptions Affected Media Choices across Industries”. Journal of Interactive Marketing, 45: 1-15.
- Ben-Moshe, B.; Elkin, M.; Gottlieb, L. A. & Omri, E., (2016). “Optimizing budget allocation for center and median points”. Theoretical Computer Science, 627: 13-25. https://doi.org/10.1016/j.tcs.2016.02.013.
- Bertsimas D. & Sim M. (2014). “The Price of Robustness”. Operation Research, 52 (1): 35–53. Doi: 10.1287/opre.1030.0065.
- Boeing, PH., (2016). “The allocation and effectiveness of China’s R&D subsidies - Evidence from listed firms”. Research Policy, 45(9): 1774-1789.
- Bozeman, B. & Rogers, J., (2001). “Strategic Management of Government-Sponsored R&D Portfolios”. Environment and Planning C: Government and Policy, 19(3): 413-442. https://doi.org/10.1068/c1v.
- Brantley, M. W.; Lee, L. H.; Chen, CH. H. & Xu, J., (2014). “An efficient simulation budget allocation method incorporating regression for partitioned domains”. Automatica, 50(5): 1391-1400. doi: 10.1016/j.automatica.2014.03.011.
- Çağlar, M. & Gürel. S., (2019). “Impact assessment based sectoral balancing in public R&D project portfolio selection”. Socio-Economic Planning Sciences, 66: 68-81. https://doi.org/10.1016/j.seps.2018.07.001.
- Chen, Y.; Wang, Y.; Hu, D. & Zhou, ZH., (2020). “Government R&D subsidies, information asymmetry, and the role of foreign investors: Evidence from a quasi-natural experiment on the shanghai-hong kong stock connect”. Technological Forecasting and Social Change, 158. https://doi.org/10.1016/j.techfore.2020.120162.
- Chun, D.; Hong, S.; Chung, Y.; Woo, CH. & Seo, H., (2016). “Influencing factors on hydrogen energy R&D projects: An ex-post performance evaluation”. Renewable and Sustainable Energy Reviews, 53, 1252-1258. https://doi.org/10.1016/j.rser.2015.09.074.
- Coldrick, S.; Longhurst, P.; Ivey, P. & Hannis, J., (2005). “An R&D options selection model for investment decisions”. Technovation, 25, 185–193. https://doi.org/10.1016/S0166-4972(03)00099-3
- Dai, X. & Cheng, L., (2015). “The effect of public subsidies on corporate R&D investment: An application of the generalized propensity score”. Technological Forecasting and Social Change, 90(B): 410-419.
- Dziallas, M. & Blind, K., (2018). “Innovation indicators throughout the nnovation process: An extensive literature analysis”. Technovation, 80-81: 3-29. DOI:10.1016/j.technovation.2018.05.005
- Edler, J. & Georghiou, L., (2007). “Public procurement and innovation—Resurrecting the demand side”. Research Policy, 36 (7): 949-963.
- Eilat, H.; Golany, B. & Shtub, A., (2008). „R&D project evaluation: an integrated DEA and balanced scorecard approach”. Omega, 36: 895–912. https://doi.org/10.1016/j.omega.2006.05.002.
- Endo E. & Tamura, Y., (2001). “Resource allocation model for planning R & D on solar cells”. Solar Energy Materials & Solar Cells, 67: 655-661
-Europa web. (2021). https://ec.europa.eu/eurostat/cache/metadata/en/gba_esms.htm#contact1616163588011, Accessed 15th July,.
Fisch, J. H., (2003). “Optimal dispersion of R&D activities in multinational corporations with a genetic algorithm”. Research Policy, 32: 1381–1396.
- Fu, Y.; Xiao, H.; Lee, L. H. & Huang, M., (2021). “Stochastic optimization using grey wolf optimization with optimal computing budget allocation”. Applied Soft Computing, 103: https://doi.org/10.1016/j.asoc.2021.107154.
- Gao, S.; Xiao, H.; Zhou, E. & Chen, W., (2017). “Robust ranking and selection with optimal computing budget allocation”. Automatica, 81: 30-36. https://doi.org/10.1016/j.automatica.2017.03.019.
- Ge, J.; Fu, Y.; Xie, R.; Liu, Y. & Mo, W., (2018). “The effect of GVC embeddedness on productivity improvement: From the perspective of R&D and government subsidy”. Technological Forecasting and Social Change, 135 (C): 22-31. DOI: 10.1016/j.techfore.2018.07.057.
- Gerchak, Y., (1998). “On allocating R&D budgets among and within projects”. R and D Management, 28(4): 305–309. doi:10.1111/1467-9310.00107
- Gharun, M., (2013). “Developing a model for estimation of public investment in science, research and technology in Iran”. IRPHE, 19 (1): 1-19
- Ghazi, A. & Hosseinzadeh Lotfi, F., (2019). “Assessment and budget allocation of Iranian natural gas distribution company- A CSW DEA based model”. Socio-Economic Planning Sciences, 66: 112-118.
- Gomez, J.; Rios Insua, D. & Alfaro, C., (2016). “A participatory budget model under uncertainty”. European Journal of Operational Research, 249(1): 351-358. https://doi.org/10.1016/j.ejor.2015.09.024.
- Hassanzadeh, F.; Nemati, H. & Sun, M., (2014a). “Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection”. European Journal of Operational Research, 238: 41–53. https://doi.org/10.1016/j.ejor.2014.03.023.
- Hassanzadeh, F.; Modarres, M.; Nemati, H. R. & Amoako-Gyampah, K., (2014b). “A robust R&D project portfolio optimization model for pharmaceutical contract research organizations”. International Journal of Production Economics 158: 18-27. https://doi.org/10.1016/j.ijpe.2014.07.001.
- Heidenberger, K. & Stummer, C., (1999). “Research and development project selection and resource allocation: a review of quantitative modelling approaches”. International Journal of Management Reviews, 1: 197–224.
- Jang, H., (2019). “A decision support framework for robust R&D budget allocation using machine learning and optimization”. Decision Support Systems,121: 1-12.
- Jang, H.; Woo, C. & Kim, T., (2018). “A Study for Designing Optimal R&D Portfolios”. Report from Science and Technology Policy Institute, Sejong, Republic of Korea.
- Jonkers, K., (2011). “A functionalist framework to compare research systems applied to an analysis of the transformation of the Chinese research system”. Research Policy, 40(9): 1295-1306. DOI: 10.1016/j.respol.2011.05.027.
- Jung, Uk. & Seo, D. W., (2010). “An ANP approach for R&D project evaluation based on interdependencies between research objectives and evaluation criteria”. Decision Support Systems, 49: 335–342. https://doi.org/10.1016/j.dss.2010.04.005.
- Khaleghi Souroush, F.; Abolghasemi, M.; Garaei Nejad, G. & Davalloo, M., (2017) “Designing a model for the allocation of higher education resources in Iran”. Financial Economics, 11: 147-170. (In Persian).
- Kim, J. H.; Bae, S. J. & Yang, J. S., (2014). “Government roles in evaluation and arrangement of R&D consortia. Technological Forecasting and Social Change, 88 (1): 202-215. DOI:10.1016/j.techfore.2014.06.022
- Kurth, M.; Keisler, J. M.; Bates, M. E.; Bridges T. S.; Summers, J. & Linkov, I., (2017). “A portfolio decision analysis approach to support energy research and development resource allocation”. Energy Policy, 105: 128-135. http://dx.doi.org/10.1016/j.enpol.2017.02.030
- Lee, H.; Choi, Y. & Seo, H., (2020). “Comparative analysis of the R&D investment performance of Korean local governments”. Technological Forecasting and Social Change, 157, https://doi.org/10.1016/j.techfore.2020.120073.
- Lee, J. & Yang, J. S., (2018). “Government R&D investment decision-making in the energy sector: LCOE foresight model reveals what regression analysis cannot”. Energy Strategy Reviews, 21, 1-15.
- Lee, J. & Yang, J. S., (2020). “Strategic R&D budget allocation to achieve national energy policy targets: the case of Korea”. Policy Studies, https://doi.org/10.1080/01442872.2020.1772216.
- Lee, S. & Lee, H., (2015). “Measuring and comparing the R&D performance of government research institutes: A bottom-up data envelopment analysis approach”. Journal of Informetrics, 9(4): 942-953.
- Lee, S. K.; Mogi, G. & Hui, K. S., (2013). “A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: In the case of energy technologies against high oil prices”. Renewable and Sustainable Energy Reviews, 21: 347-355. https://doi.org/10.1016/j.rser.2012.12.067
- Lee, Y. H. & Kim, Y. J. (2016). ”Analyzing interaction in R&D networks using the Triple Helix method: Evidence from industrial R&D programs in Korean government”. Technological Forecasting and Social Change, 110 (C): 93-105. DOI: 10.1016/j.techfore.2015.10.017.
- Lin, F. J.; Wu, Sh. H.; Hsu, M. Sh. & Perng, Ch., (2016). “The determinants of government-sponsored R&D alliances. Journal of Business Research, 69(11): 5192-5195. DOI: 10.1016/j.jbusres.2016.04.111.
- Litvinchev, I. S.; Lopez-Irarragorri, F.; Alvarez, A. & Fernández González E. R., (2010). “Large-scale public R&D portfolio selection by maximizing a biobjective impact measure”. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40: 572–582. DOI:10.1109/TSMCA.2010.2041228
- Liu, C. C., (2011). “A study for allocating resources to research and development programs by integrated fuzzy DEA and fuzzy AHP”. Scientific Research and Essays, 6: 3973–3978. DOI:10.5897/SRE10.838.
- Luo, L. M., (2012). “Optimal diversification for R&D project portfolios”. Scientometrics 91: 219–229.
- Málek, J.; Hudečková, V. & Matějka, M., (2014). “System of Evaluation of Research Institutions in the Czech Republic”. Procedia Computer Science, 33: 315-320. https://doi.org/10.1016/j.procs.2014.06.050.
- Modarres M. & Hasanzadeh, F., (2009). “A Robust Optimization Approach to R&D Project Selection”. World Applied Sciences Journal, 7 (5): 582-592.
- Momeni, F. & Alizadeh, P., (2014). “Analysis of the barriers for innovation policy-making effectiveness in Iran: An Institutional Approach”. Journal of Applied Economics Studies in Iran, 2(8): 73-89.
- Mulyanto. (2016). “Productivity of R&D institution: The case of Indonesia”. Technology in Society, 44: 78-91. https://doi.org/10.1016/j.techsoc.2015.12.001.
- OECD, Frascati Manual, (2015). Guidelines for Collecting and Reporting Data on Research and Experimental Development.
- Park, H.; Lee, J. & Kim, B., (2015). ”Project selection in NIH: a natural experiment from ARRA”. Research Policy, 44: 1145–1159. https://doi.org/10.1016/j.respol.2015.03.004.
- Perez-Sebastian, F., (2015). “Market failure, government inefficiency, and optimal R&D policy”. Economics Letters, 128: 43-47.
- Philpott, K.; Dooley, L.; O’Reilly C. & Lupton, G., (2011). “The entrepreneurial university: Examining the underlying academic tensions”. Technovation, 31: 161-170.
- Pourtalei, F. & Atashak, M., (2010). ”A Model for Research and Technology Institutes Budgeting Based on Science and Technology Outputs Cost”. Journal of Science and Technology Policy, 2(4): 53-65 (In Persian).
- Rahmani Fazli, H. & Arabmazar, A., (2016). “Optimal Provincial Budget Allocation: A Goal Programing Approach”. Applied Theories of Economics, 3(3): 133-152 (In Persian).
- Rahnema, G.; Motafaker azad, M. A. & Ranjpoor, R., (2015). “The Impact of Internal R&D Capital, Imported Capital Goods Stock and Human Capital on Iranian High-Tech Industries' Value Added”. Journal of Applied Economics Studies in Iran, 4(15): 21-54 (In Persian).
- Rajabi, A., (2012). “Goal Programming: An Effective Approach for Budgeting and Optimal Financial Resource Allocation (Case Study: Budget Allocation in Ministry of Health and Medical Education)”, Health Accounting, 1(2-3): 1-16 (In Persian).
- Sánchez-Barrioluengo, M., (2014). “Articulating the ‘three-missions’ in Spanish universities”. Research Policy, 43(10): 1760-1773. DOI: 10.1016/j.respol.2014.06.001.
- Seru, A., (2014). “Firm boundaries matter: Evidence from conglomerates and R&D activity”. Journal of Financial Economics, 111(2): 381-405. https://doi.org/10.1016/j.jfineco.2013.11.001.
- Sirin, S. M. & Erdogan, F. H., (2013). “R&D expenditures in liberalized electricity markets: The case of Turkey”. Renewable and Sustainable Energy Reviews, 24(C): 491-498. DOI: 10.1016/j.rser.2013.03.069.
- Sun, B.; Liu, Y. & Yang, G., (2017). ”A robust pharmaceutical R&D project portfolio optimization problem under cost and resource uncertainty”. Journal of Uncertain Systems, 11: 205–220.
- Talias, M., (2007). “Optimal decision indices for R&D project evaluation in the pharmaceutical industry: Pearson Index versus Gittins Index”. European Journal of Operational Research, 177: 1105–1112. https://doi.org/10.1016/j.ejor.2006.01.011.
- Tan, B.; Anderson Jr., E. G.; Dyer, J. S. & Parker, G. G., (2010). “Evaluating system dynamics models of risky projects using decision trees: alternative energy projects as an illustrative example”. System Dynamics Review, 26: 1–17. https://doi.org/10.1002/sdr.433.
- Tangian, A., (2004). “Redistribution of university budgets with respect to the status quo”. European Journal of Operational Research, 157: 409–428. doi:10.1016/S0377-2217(03)00271-6
- Tolga, AÇ., (2008). “Fuzzy multicriteria R&D project selection with a real options valuation model”. Journal of Intelligent & Fuzzy Systems, 19 (4-5): 359–371.
- Üçtuğ, F. G. & Yükseltan, E., (2012). “A linear programming approach to household energy conservation: Efficient allocation of budget”. Energy and Buildings, 49: 200-208.
- UNESCO-UIS. (2009). “Definitions of R&D, innovation and S&T activities”. Training Workshop on Science, Technology and Innovation Indicators, Cairo, Egypt, 28-30 September
- Vandaele, N. J. & Decouttere. C. J., (2013). “Sustainable R&D portfolio assessment”. Decision Support Systems, 54(4): 1521-1532. https://doi.org/10.1016/j.dss.2012.05.054.
- Wang, K.; Mao Y. & Chen, J. Sh. Yu., (2018). “The optimal research and development portfolio of low-carbon energy technologies: A study of China”. Journal of Cleaner Production, 176: 1065-1077. DOI: 10.1016/j.jclepro.2017.11.230.
- Wiesenthal, T.; Leduc, G.; Haegeman, K. & Schwarz, H., (2012). “Bottom-up estimation of industrial and public R&D investment by technology in support of policy-making: The case of selected low-carbon energy technologies”. Research Policy, 41(1): 116-131. DOI: 10.1016/j.respol.2011.08.007.
- Wu, A., (2017). “The signal effect of Government R&D Subsidies in China: Does ownership matter?”. Technological Forecasting and Social Change, 117: 339-345. https://doi.org/10.1016/j.techfore.2016.08.033.
- Wu, T.; Yang, SH. & Tan, J., (2020). “Impacts of government R&D subsidies on venture capital and renewable energy investment - an empirical study in China”. Resources Policy, 68, https://doi.org/10.1016/j.resourpol.2020.101715.
- Xiao, H.; Gao, S. & HayLee, L., (2017). “Simulation budget allocation for simultaneously selecting the best and worst subsets”. Automatica, 84: 117-127. https://doi.org/10.1016/j.automatica.2017.07.006.
- Yu, F.; Guo, Y.; Le-Nguyen, K.; Barnes, S. J. & Zhang, W., (2016). “The impact of government subsidies and enterprises’ R&D investment: A panel data study from renewable energy in China”. Energy Policy, 89: 106-113. https://doi.org/10.1016/j.enpol.2015.11.009.
- Zera’at Kish, Y.; Nasiri, H.; Davari, A. & Yousefi, H., (2019). “Examining the budget bill for the year 1400 of the whole country 24. Higher education, research and technology funding”. Majlis Research Center, Policy Report, serial number: 17337.
- Zhang, W., (2018). “Government R&D subsidy policy in China: An empirical examination of effect, priority, and specifics”. Technological Forecasting and Social Change, 135: 75-82.
- Zhao, B. & Ziedonis, R., (2020). „State governments as financiers of technology startups: Evidence from Michigan's R&D loan program”. Research Policy, 49(4): https://doi.org/10.1016/j.respol.2020.103926. Zhao, SH., Xu, B.,