Selecting a group of leading indicators for Iran's GDP

Document Type : Research Article


1 Assistant Professor of Economics, Sharif Univeristy of Technology

2 PhD Student, Univeristy of Pensylvania, US


In this paper, we examine all the macroeconomic time series which can be considered as potential leading indicators of the state of real activity in Iran, to find the best leading indicators. According to Einian and Barakchian (1393), Non-oil GDP show the fluctuations of real activity in Iran better than other variables. Hence, in our study we consider Non-oil GDP as the target variable and the dating of the business cycles are identified following Einian and Barakchian (1393). 265 macroeconomic variables, obtained from the data sets released by the Central Bank of Iran, are used to construct 1590 potential leading indicators; 6 kinds of transformations are applied to each variable in order to generate 1590 series. These time series are quarterly series which span the period of 1367Q1 to 1387Q2. The number of Missing Points, False Alarm Points, Late Alarm Points, Concordance, and Standard Deviation in forecasting peaks and troughs are used as the main criteria to evaluate the potential leading indicators. The results show that no variable does well in terms of all the criteria; however, there exist 20 variables which performs well in forecasting peaks and troughs and there exist 6 variables which perform well in terms of the standard deviation of the forecasts. Therefore, selecting a set of potential leading indicators to construct a composite leading indicator for non-oil GDP depends entirely on the importance of each criteria for the institutes/researchers who develop the composite leading indicator. We also evaluate the potential leading indicators based on their release lags in the Central Bank's publications. Samaee and Atrianfar (1390) have shown that the national accounts' data have the longest lag (more than 6 months on average), and therefore, we suggest to diminish their role in constructing the composite leading indicator.


درگاهی، حسن. (1387). «شناسایی شاخص‌های پیشرو و ساخت شاخص ترکیبی جهت تجزیه‌وتحلیل ادوار تجاری در اقتصاد ایران»، پژوهشکده پولی و بانکی، تهران.
سمائی، کیان و عطریانفر، حامد. (1390). «داده‌های زمان-حقیقی»،  تازه‌های اقتصادی،‌ شماره 133،‌ 175-163.
طباطبایی یزدی،‌ رویا؛ ملک، فردریک و محمودی، بهزاد. (1387). «شاخص ترکیبی آینده‌نگر اقتصاد ایران در سال 1387». فصلنامه راهبرد،‌ شماره 46، 434-415.
عینیان، مجید و برکچیان، سید مهدی. (1393). «شناسایی و تاریخ‌گذاری چرخه‌های تجاری اقتصاد ایران». فصلنامه پژوهش­های پولی و بانکی، شماره 20، 161-194.
محسنی، حدیثه؛ شهیکی­تاش، محمدنبی؛ پهلوانی، مصیب و میرجلیل، سیدحسین. (1398). «بررسی سیاست تسهیل اعتباری بر متغیرهای کلان در اقتصاد ایران»، فصلنامه مطالعات اقتصادی کاربردی ایران، شماره 31، 67-93.
محمدی، تیمور؛ صفرزاده، اسماعیل و موسوی، میرحسین. (1388). «شناسایی نقاط چرخش اقتصاد ایران در یک زمان واقعی» پژوهشنامه اقتصادی، شماره سوم،‌ 89-65.
مجاب، رامین و برکچیان، سید مهدی. (1393). «تحلیل حساسیت شناسایی چرخه­های تجاری به انتخاب روش آماری»، فصلنامه پژوهش­های پولی و بانکی، شماره 21، 381-405.
مهرگان، علی و کردبچه، حمید. (1396). «بررسی آثار کوتاه­مدت و بلندمدت تحریم کالاهای سرمایه­ای وارداتی بر تولید ناخالص داخلی»، فصلنامه مطالعات اقتصادی کاربردی ایران، شماره 22، 197-209.
Albert, M. J., Chib, S. (1993). “Bayesian Analysis of Binary and Policychotomous Response Data”. Journal of the American and Statistical Association 88, 669-679
Artis, M. J., Galvao, A. B., Marcellino, M. (2003). “The Transmission Mechanism in a Changing World”. CEPR Working Paper No. 4014, 2003.
Artis, M. J., Marcellino, M., Proietti, T. (2004). “Dating the Euro Area Business Bycle”. Oxford Bulletin of Economics and Statistics, 66, 537-565.
Baxter, M., King, R. G. (1999). “Measuring Business Cycles: Approximate Band‐Pass Filters for macroeconomic Time Series”. The Review of Economics and Statistics, 81(4), 575-593.
Bry, G., Boschan, C. (1971). “Cyclical Analysis of Time Series: Selected Procedures and Computer Programs”. Technical Paper 20, NBER. Columbia University Press.
Christiano, L. J., Fitzgerald, T. J. (2003). “The Band Pass Filter”. International Economic Review, 44(2), 435-465.
Del Negro, M. (2001). Turn, Turn, Turn: Predicting Turning Points in Economic Activity. Federal Reserve Bank of Atlanta Economic Review 87.
Estrella, A., Mishkin, F.S. (1998). “Predicting US Recessions: Financial Variables as Leading Indicators”. The Review of Economics and Statistics, 80(1), 45-61.
Gyomai, G., Nilsson, R. (2011). Cycle Extraction: A Comparison of The Phase-Average Trend Method, The Hodrick-Prescott and Christiano-Fitzgerald Filters. Organisation for Economic Co-operation and Development.
Hamilton, J. D., Perez-Quiros, G. (1996). “What Do the Leading Indicators Lead?”, The Journal of Business, 69(1), 27-49.
Harding, D., Pagan, A. (2003). “A Comparison of Two Business Cycle Dating Methods”. Journal of Economic Dynamics and Control, 27(9), 1681-1690.
Krolzig, H. M. (1998). Predicting Markov-Switching Vector Autoregressive Processes. Mimeo, Institute of Economics and Statistics, University of Oxford.
Marcellino, M. (2006). Leading Iindicators. In Handbook of Forecasting, Chapter No 16. Amsterdam: Elsevier.
Moneta, F. (2003). Does the Yield Spread Predict Recession in the Euro Area. ECB Working Paper No. 294.
Moore, G. H., Zarnowitz, V. (1986). “The Development and Role of NBER’s Business Cycle Chronologies”. In:Gordon, R.J. (Ed.), The American Business Cycle: Continuity and Change. University of Chicago Press, Chicago, 735–779.
OECD. (2008). “Handbook on Constructing Composite Indicators, Methodology and User Guide”.
OECD. (2008). “OECD System of Composite Leading Indicators”.
Osborn, D., Sensier, M., Simpson, P. W. (2001). “Forecasting UK Industrial Production over the Business Cycle”. Journal of Forecasting, 20(6), 405-424.
Stock, J. H., Watson, M.W. (1991). A Probability Model of the Coincident Indicators." In Leading Economic Indicators: New Approaches and Forecasting Records, by K., Moore,G.H. Lahiri. Cambridge, UK: Cambridge University Press.
Stock, J. H., Watson, M.W. (1992). “A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience”. NBER Working Paper No. 4014.
US Bureau of Census. (2002). Seasonal Adjustment Interface for Tramo/Seats and X12-Arima.