The Threshold Effect of Economic Complexity on Energy Consumption in Iran Using Smooth Transition Regression Model

Document Type : Research Article

Author

Abstract

The economic complexity index is one of the latest published indicators to measure the level of knowledge and technology in countries. In this paper, using a smooth transition regression model, the effect of economic complexity on energy consumption is evaluated for the first time in the Iranian economy during the period 1971-2013. The results of the model estimation confirm the existence of a nonlinear relationship between per capita income, real energy price index, and the complexity of the economy with per capita energy consumption. Also, economic complexity leads to a two-regime structure with a threshold of -1.15. So that in the first regime, which is related to the low levels of economic complexity, the effect of this variable on energy consumption was positive, that could be due to the rebound effects of technology on energy consumption. In the second regime, which is related to higher levels of complexity, the relationship was negative. Therefore, in the second regime, improving the level of complexity can help to save energy. On the other hand, the elasticity of income and price in both regimes was less than one, but as the complexity passing the threshold, the elasticity has increased in particular with respect to price, which indicates that with the increase of technology and knowledge of the country, the power of the reaction of consumers to the price changes will increase.

Keywords


آذربایجانی، کریم؛ شریفی، علیمراد و شجاعی، عبدالناصر. (1387). «تخمین تابع تقاضای گاز طبیعی در بخش صنعت کشور»، مجله توسعه و سرمایه، شماره ۱، 70-47.
دهقانپور، حامد و اسماعیلی، عبدالکریم. (1395). «بررسی رابطه بین تکنولوژی کشاورزی و تقاضای انرژی در ایران»، تحقیقات اقتصاد کشاورزی، 8(1)، 49-35.
صدرزاده مقدم، سعید؛ صادقی، زین­العابدین و قدس الهی، احمد. (1392). «تخمین تابع تقاضای انرژی و کشش قیمتی و جانشینی نهاده­ها در بخش صنعت: رگرسیون معادلات به ظاهر نامرتبط»، پژوهشنامه اقتصاد انرژی ایران، 2، 127- 107.
ﻋﺎﺑﺪزاده، ﻛﺎﻇﻢ و ﺷﻜﺮی، ﻣﺼﻄﻔﻲ. (1396). تأثیر ﺳﻄﺢ ﺗﻜﻨﻮﻟﻮژی ﺟﻤﻌﻴﺖ و رﺷﺪ اﻗﺘﺼﺎدی روی ﻣﺼﺮف اﻧﺮژی اﻟﻜﺘﺮﻳﻜﻲ ﺑﺎ ﻛﺎرﺑﺮد رﮔﺮﺳﻴﻮن ﻓﺎزی، سی و دومین کنفرانس بین‌المللی برق، تهران، ایران.
عبدلی، قهرمان و ورهرامی، ویدا. (1388). «بررسی اثر پیشرفت تکنولوژی بر صرفه‌جویی مصرف انرژی در بخش صنعت و کشاورزی با استفاده از تابع کاب-داگلاس»، فصلنامه مطالعات اقتصاد انرژی، 23، 41-23.
ورهرامی، ویدا؛ مشرفی، رسام و لایق گیگلو، جابر. (1394). ارزیابی تقارن یا عدم تقارن واکنش مصرف گاز طبیعی به تغییرات قیمت و درآمد در بخش صنعت ایران. فصلنامه مطالعات اقتصادی کاربردی ایران، 4(16)، 135-155.
Acs, Z. J., Anselin, L., & Varga, A. (2002). “Patents and innovation count as measures of regional production of new knowledge”. Research policy, 31(7), 1069-1085.
Ahmad, U., & ArshadKhan, M. (2009). “Energy demand in Pakistan: a disaggregate analysis”. The Pakistan Development Review, 437-455.
Khan, G., Ahmed, A. M., & Kiani, A. (2016). “Dynamics of energy consumption, technological innovations and economic growth in Pakistan”. Journal of Business & Economics, 8(1), 1-29.
Ang, J. B. (2009). “CO2 emissions, research and technology transfer in China”. Ecological Economics, 68(10), 2658-2665.
Balke, N. S., and Fomby, T. B. (1997). “Threshold Cointegration”. International economic review, 627-645.
Basu, S., & Fernald, J. (2007). “Information and communications technology as a general‐purpose technology: Evidence from US industry data”. German Economic Review, 8(2), 146-173.
Bhattacharyya, S. C. (2011). Energy Economics: Concepts, Issues, Markets and Governance. Springer Science & Business Media.
Can, M., & Gozgor, G. (2017). “The impact of economic complexity on carbon emissions: evidence from France”. Environmental Science and Pollution Research, 24(19), 16364-16370.
Cohen, W. M., & Klepper, S. (1992). “Firm size versus diversity in the achievement of technological advance”. Innovation and technological change: An international comparison, 183-203.
Crafts, N. (2003). Quantifying the contribution of technological change to economic growth in different eras: a review of the evidence.
Dargay, J. M., Gately, D., & Huntington, H. G. (2007). Price and Income Responsiveness of World Oil Demand, by Product, Energy Modeling Forum Working Paper EMF OP 61.
Fei, Q., & Rasiah, R. (2014). “Electricity consumption, technological innovation, economic growth and energy prices: does energy export dependency and development levels matter?”, Energy Procedia61, 1142-1145.
Fei, Q., Rasiah, R., & Leow, J. (2014). “The impacts of energy prices and technological innovation on the fossil fuel-related electricity-growth nexus: An assessment of four net energy exporting countries”. Journal of Energy in Southern Africa, 25(3), 37-46.
Gately, D., and Huntington, H. G. (2002). “The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand”, The Energy Journal, Vol. 23, No. 1, 19-55.
Griliches, Z. (1998). Patent statistics as economic indicators: a survey. In R&D and productivity: the econometric evidence (pp. 287-343). University of Chicago Press.
Hausmann, R., Hidalgo, C. A., Bustos, S., Coscia, M., Simoes, A., & Yildirim, M. A. (2013). The atlas of economic complexity: Mapping paths to prosperity. Mit Press.
Hu, J. L., and Lin, C. H. (2008). “Disaggregated Energy Consumption and GDP in Taiwan: A Threshold Co-Integration Analysis.” Energy Economics, Vol. 30, Issue. 5, 2342-2358.
Hidalgo, C. A., & Hausmann, R. (2009). “The building blocks of economic complexity”. Proceedings of the national academy of sciences, 106(26), 10570-10575.
Huntington, H. G. (2007). “Industrial Natural Gas Consumption in the United States: An Empirical Model for Evaluating Future Trends”. Energy Economics, Vol. 29(4), 743-759.
Jacobsen, H. K. (2001). “Technological progress and long-term energy demand—a survey of recent approaches and a Danish case”. Energy Policy, 29(2), 147-157.
Jin, L., Duan, K., & Tang, X. (2018). “What Is the Relationship between Technological Innovation and Energy Consumption? Empirical Analysis Based on Provincial Panel Data from China”. Sustainability10(1), 145-158.
Jorgenson, D. W., & Fraumeni, B. M. (1981). Relative Prices and Technical Change in Modeling and Measuring Natural Resource Substitution, ER Berndt and BC Fields.
Komen, M. H., Gerking, S., & Folmer, H. (1997). “Income and environmental R&D: empirical evidence from OECD countries”. Environment and Development Economics, 2(4), 505-515.
Ladu, M. G., & Meleddu, M. (2014). “Is there any relationship between energy and TFP (total factor productivity)? A panel cointegration approach for Italian regions”. Energy, 75, 560-567.
Li, K., & Lin, B. (2014). “The nonlinear impacts of industrial structure on China's energy intensity”. Energy69, 258-265.
Lin, B., & Du, K. (2015). “Measuring energy rebound effect in the Chinese economy: an economic accounting approach”. Energy economics, 50, 96-104.
Murad, M. W., Alam, M. M., Noman, A. H. M., & Ozturk, I. (2019). “Dynamics of technological innovation, energy consumption, energy price and economic growth in Denmark”. Environmental Progress & Sustainable Energy38(1), 22-29.
Neagu, O., & Teodoru, M. C. (2019). “The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries”. Sustainability, 11(2), 497-526.
Ghaderi, S. F., Azadeh, M. A., and Mohammadzadeh, S. (2006). “Electricity Demand Function for the Industries of Iran”, Information Technology Journal, Vol.5, Issue. 3, 401-404.
Omay, T., Hasanov, M., and Ucar, N. (2014). “Energy Consumption and Economic Growth: Evidence from Nonlinear Panel Cointegration and Causality Tests.” Applied Econometrics, 34(2), 36-55.
Sterner, T. (1990). “Energy efficiency and capital embodied technical change: the case of Mexican cement manufacturing”. The Energy Journal, 155-167.
Tang, C. F., & Tan, E. C. (2013). “Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia”. Applied Energy104, 297-305.
Teräsvirta, T. (1994). “Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models”, Journal of American Statistical Association, Vol. 89, 208-218.
van Dijk, D. D. (1999). Smooth transition models: extensions and outlier robust inference (No. 200).
Wei, W. X., & Yang, F. (2010). “Impact of technology advance on carbon dioxide emission in China”. Statistical Research, 27(7), 36-44.
Yuan, C., Liu, S., & Wu, J. (2009). “Research on energy-saving effect of technological progress based on Cobb–Douglas production function”. Energy Policy, 37(8), 2842-2846.